A tethered niacin-derived pincer complex with a nickel-carbon bond in lactate racemase
Lactic acid racemization is involved in lactate metabolism and cell wall assembly of many microorganisms. Lactate racemase (Lar) requires nickel, but the nickel-binding site and the role of three accessory proteins required for its activation remain enigmatic. We combined mass spectrometry and x-ray...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2015-07, Vol.349 (6243), p.66-69 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lactic acid racemization is involved in lactate metabolism and cell wall assembly of many microorganisms. Lactate racemase (Lar) requires nickel, but the nickel-binding site and the role of three accessory proteins required for its activation remain enigmatic. We combined mass spectrometry and x-ray crystallography to show that Lar from Lactobacillus plantarum possesses an organometallic nickel-containing prosthetic group. A nicotinic acid mononucleotide derivative is tethered to Lys184 and forms a tridentate pincer complex that coordinates nickel through one metal-carbon and two metal-sulfur bonds, with His200 as another ligand. Although similar complexes have been previously synthesized, there was no prior evidence for the existence of pincer cofactors in enzymes. The wide distribution of the accessory proteins without Lar suggests that it may play a role in other enzymes. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.aab2272 |