Rapid and Simple Capillary-Rise/Vanishing Interfacial Tension Method To Determine Crude Oil Minimum Miscibility Pressure: Pure and Mixed CO2, Methane, and Ethane

We report here a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & fuels 2016-08, Vol.30 (8), p.6365-6372
Hauptverfasser: Hawthorne, Steven B, Miller, David J, Jin, Lu, Gorecki, Charles D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report here a simplification of the capillary-rise/vanishing interfacial tension (IFT) method to measure minimum miscibility pressure (MMP) based on only requiring knowledge of when the interfacial tension approaches zero. Simply measuring the height of the crude oil in a capillary at several pressures from ambient to near the MMP pressure and extrapolating the oil height versus pressure plot to zero oil height yields the MMP without the need of the additional instrumentation and labor required to perform actual IFT measurements. A total of 2–4 MMP values can be determined per day with only one experimental apparatus, and the method greatly reduces the initial cost and complexity of the required instrumentation. The use of three capillaries having different inner diameters allows for triplicate determinations of MMP from each experiment. Because the actual MMP pressure need not be reached during the experiment, MMP values that exceed the pressure ratings of the equipment can be reasonably estimated (e.g., MMPs using pure nitrogen). The method was used to determine the MMP pressure for crude oil samples from a conventional Muddy Formation reservoir in the Powder River Basin [American Petroleum Institute (API) gravity of 35.8°] and an unconventional Bakken Formation reservoir in the Williston Basin (API gravity of 38.7°). The method is reproducible [typically
ISSN:0887-0624
1520-5029
DOI:10.1021/acs.energyfuels.6b01151