Recoverable information and emergent conservation laws in fracton stabilizer codes

We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-04, Vol.97 (13), Article 134426
Hauptverfasser: Schmitz, A. T., Ma, Han, Nandkishore, Rahul M., Parameswaran, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Physical review. B
container_volume 97
creator Schmitz, A. T.
Ma, Han
Nandkishore, Rahul M.
Parameswaran, S. A.
description We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information and prove their equivalence. To demonstrate its utility, we compute recoverable information for fracton models using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z2 Gauss-law-type constraints, which in turn imply emergent Z2 conservation laws for pointlike quasiparticle excitations of an underlying topologically ordered phase.
doi_str_mv 10.1103/PhysRevB.97.134426
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1434816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123172472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-74efd40566c028cbe38d6bca0f2a9345a68228fd6bb9d1c3fda03ff8e4fde52f3</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWLQv4GrQ9dTcJjNZavEGBaXoOmSSEztlOqlJWqlPb2TU1bl9HH4-hC4InhGC2fXL6hCXsL-dyXpGGOdUHKEJ5UKWUgp5_N9X-BRNY1xjjInAssZygpZLMH4PQbc9FN3gfNjo1Pmh0IMtYAPhHYZUGD9ECPvx0uvPmNHCBW1SnmPSbdd3XxAyZyGeoxOn-wjT33qG3u7vXueP5eL54Wl-sygNJzSVNQdnOa6EMJg2pgXWWNEajR3VkvFKi4bSxuVdKy0xzFmNmXMNcGehoo6docvxr4-pU9F0CcwqJx3AJEU44w0RGboaoW3wHzuISa39Lgw5l6KEMlJTXtNM0ZEywccYwKlt6DY6HBTB6sex-nOsZK1Gx-wbgg5yhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123172472</pqid></control><display><type>article</type><title>Recoverable information and emergent conservation laws in fracton stabilizer codes</title><source>American Physical Society Journals</source><creator>Schmitz, A. T. ; Ma, Han ; Nandkishore, Rahul M. ; Parameswaran, S. A.</creator><creatorcontrib>Schmitz, A. T. ; Ma, Han ; Nandkishore, Rahul M. ; Parameswaran, S. A.</creatorcontrib><description>We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information and prove their equivalence. To demonstrate its utility, we compute recoverable information for fracton models using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z2 Gauss-law-type constraints, which in turn imply emergent Z2 conservation laws for pointlike quasiparticle excitations of an underlying topologically ordered phase.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.134426</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Conservation laws ; Entanglement</subject><ispartof>Physical review. B, 2018-04, Vol.97 (13), Article 134426</ispartof><rights>Copyright American Physical Society Apr 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-74efd40566c028cbe38d6bca0f2a9345a68228fd6bb9d1c3fda03ff8e4fde52f3</citedby><cites>FETCH-LOGICAL-c412t-74efd40566c028cbe38d6bca0f2a9345a68228fd6bb9d1c3fda03ff8e4fde52f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1434816$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitz, A. T.</creatorcontrib><creatorcontrib>Ma, Han</creatorcontrib><creatorcontrib>Nandkishore, Rahul M.</creatorcontrib><creatorcontrib>Parameswaran, S. A.</creatorcontrib><title>Recoverable information and emergent conservation laws in fracton stabilizer codes</title><title>Physical review. B</title><description>We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information and prove their equivalence. To demonstrate its utility, we compute recoverable information for fracton models using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z2 Gauss-law-type constraints, which in turn imply emergent Z2 conservation laws for pointlike quasiparticle excitations of an underlying topologically ordered phase.</description><subject>Conservation laws</subject><subject>Entanglement</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMoWLQv4GrQ9dTcJjNZavEGBaXoOmSSEztlOqlJWqlPb2TU1bl9HH4-hC4InhGC2fXL6hCXsL-dyXpGGOdUHKEJ5UKWUgp5_N9X-BRNY1xjjInAssZygpZLMH4PQbc9FN3gfNjo1Pmh0IMtYAPhHYZUGD9ECPvx0uvPmNHCBW1SnmPSbdd3XxAyZyGeoxOn-wjT33qG3u7vXueP5eL54Wl-sygNJzSVNQdnOa6EMJg2pgXWWNEajR3VkvFKi4bSxuVdKy0xzFmNmXMNcGehoo6docvxr4-pU9F0CcwqJx3AJEU44w0RGboaoW3wHzuISa39Lgw5l6KEMlJTXtNM0ZEywccYwKlt6DY6HBTB6sex-nOsZK1Gx-wbgg5yhg</recordid><startdate>20180426</startdate><enddate>20180426</enddate><creator>Schmitz, A. T.</creator><creator>Ma, Han</creator><creator>Nandkishore, Rahul M.</creator><creator>Parameswaran, S. A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20180426</creationdate><title>Recoverable information and emergent conservation laws in fracton stabilizer codes</title><author>Schmitz, A. T. ; Ma, Han ; Nandkishore, Rahul M. ; Parameswaran, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-74efd40566c028cbe38d6bca0f2a9345a68228fd6bb9d1c3fda03ff8e4fde52f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conservation laws</topic><topic>Entanglement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitz, A. T.</creatorcontrib><creatorcontrib>Ma, Han</creatorcontrib><creatorcontrib>Nandkishore, Rahul M.</creatorcontrib><creatorcontrib>Parameswaran, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitz, A. T.</au><au>Ma, Han</au><au>Nandkishore, Rahul M.</au><au>Parameswaran, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recoverable information and emergent conservation laws in fracton stabilizer codes</atitle><jtitle>Physical review. B</jtitle><date>2018-04-26</date><risdate>2018</risdate><volume>97</volume><issue>13</issue><artnum>134426</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information and prove their equivalence. To demonstrate its utility, we compute recoverable information for fracton models using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z2 Gauss-law-type constraints, which in turn imply emergent Z2 conservation laws for pointlike quasiparticle excitations of an underlying topologically ordered phase.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.134426</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2018-04, Vol.97 (13), Article 134426
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1434816
source American Physical Society Journals
subjects Conservation laws
Entanglement
title Recoverable information and emergent conservation laws in fracton stabilizer codes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recoverable%20information%20and%20emergent%20conservation%20laws%20in%20fracton%20stabilizer%20codes&rft.jtitle=Physical%20review.%20B&rft.au=Schmitz,%20A.%20T.&rft.date=2018-04-26&rft.volume=97&rft.issue=13&rft.artnum=134426&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.134426&rft_dat=%3Cproquest_osti_%3E2123172472%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123172472&rft_id=info:pmid/&rfr_iscdi=true