Recoverable information and emergent conservation laws in fracton stabilizer codes
We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We d...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2018-04, Vol.97 (13), Article 134426 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Physical review. B |
container_volume | 97 |
creator | Schmitz, A. T. Ma, Han Nandkishore, Rahul M. Parameswaran, S. A. |
description | We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information and prove their equivalence. To demonstrate its utility, we compute recoverable information for fracton models using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z2 Gauss-law-type constraints, which in turn imply emergent Z2 conservation laws for pointlike quasiparticle excitations of an underlying topologically ordered phase. |
doi_str_mv | 10.1103/PhysRevB.97.134426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1434816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123172472</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-74efd40566c028cbe38d6bca0f2a9345a68228fd6bb9d1c3fda03ff8e4fde52f3</originalsourceid><addsrcrecordid>eNo9kMtKAzEUhoMoWLQv4GrQ9dTcJjNZavEGBaXoOmSSEztlOqlJWqlPb2TU1bl9HH4-hC4InhGC2fXL6hCXsL-dyXpGGOdUHKEJ5UKWUgp5_N9X-BRNY1xjjInAssZygpZLMH4PQbc9FN3gfNjo1Pmh0IMtYAPhHYZUGD9ECPvx0uvPmNHCBW1SnmPSbdd3XxAyZyGeoxOn-wjT33qG3u7vXueP5eL54Wl-sygNJzSVNQdnOa6EMJg2pgXWWNEajR3VkvFKi4bSxuVdKy0xzFmNmXMNcGehoo6docvxr4-pU9F0CcwqJx3AJEU44w0RGboaoW3wHzuISa39Lgw5l6KEMlJTXtNM0ZEywccYwKlt6DY6HBTB6sex-nOsZK1Gx-wbgg5yhg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123172472</pqid></control><display><type>article</type><title>Recoverable information and emergent conservation laws in fracton stabilizer codes</title><source>American Physical Society Journals</source><creator>Schmitz, A. T. ; Ma, Han ; Nandkishore, Rahul M. ; Parameswaran, S. A.</creator><creatorcontrib>Schmitz, A. T. ; Ma, Han ; Nandkishore, Rahul M. ; Parameswaran, S. A.</creatorcontrib><description>We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information and prove their equivalence. To demonstrate its utility, we compute recoverable information for fracton models using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z2 Gauss-law-type constraints, which in turn imply emergent Z2 conservation laws for pointlike quasiparticle excitations of an underlying topologically ordered phase.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.97.134426</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Conservation laws ; Entanglement</subject><ispartof>Physical review. B, 2018-04, Vol.97 (13), Article 134426</ispartof><rights>Copyright American Physical Society Apr 1, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-74efd40566c028cbe38d6bca0f2a9345a68228fd6bb9d1c3fda03ff8e4fde52f3</citedby><cites>FETCH-LOGICAL-c412t-74efd40566c028cbe38d6bca0f2a9345a68228fd6bb9d1c3fda03ff8e4fde52f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1434816$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitz, A. T.</creatorcontrib><creatorcontrib>Ma, Han</creatorcontrib><creatorcontrib>Nandkishore, Rahul M.</creatorcontrib><creatorcontrib>Parameswaran, S. A.</creatorcontrib><title>Recoverable information and emergent conservation laws in fracton stabilizer codes</title><title>Physical review. B</title><description>We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information and prove their equivalence. To demonstrate its utility, we compute recoverable information for fracton models using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z2 Gauss-law-type constraints, which in turn imply emergent Z2 conservation laws for pointlike quasiparticle excitations of an underlying topologically ordered phase.</description><subject>Conservation laws</subject><subject>Entanglement</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKAzEUhoMoWLQv4GrQ9dTcJjNZavEGBaXoOmSSEztlOqlJWqlPb2TU1bl9HH4-hC4InhGC2fXL6hCXsL-dyXpGGOdUHKEJ5UKWUgp5_N9X-BRNY1xjjInAssZygpZLMH4PQbc9FN3gfNjo1Pmh0IMtYAPhHYZUGD9ECPvx0uvPmNHCBW1SnmPSbdd3XxAyZyGeoxOn-wjT33qG3u7vXueP5eL54Wl-sygNJzSVNQdnOa6EMJg2pgXWWNEajR3VkvFKi4bSxuVdKy0xzFmNmXMNcGehoo6docvxr4-pU9F0CcwqJx3AJEU44w0RGboaoW3wHzuISa39Lgw5l6KEMlJTXtNM0ZEywccYwKlt6DY6HBTB6sex-nOsZK1Gx-wbgg5yhg</recordid><startdate>20180426</startdate><enddate>20180426</enddate><creator>Schmitz, A. T.</creator><creator>Ma, Han</creator><creator>Nandkishore, Rahul M.</creator><creator>Parameswaran, S. A.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20180426</creationdate><title>Recoverable information and emergent conservation laws in fracton stabilizer codes</title><author>Schmitz, A. T. ; Ma, Han ; Nandkishore, Rahul M. ; Parameswaran, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-74efd40566c028cbe38d6bca0f2a9345a68228fd6bb9d1c3fda03ff8e4fde52f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Conservation laws</topic><topic>Entanglement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitz, A. T.</creatorcontrib><creatorcontrib>Ma, Han</creatorcontrib><creatorcontrib>Nandkishore, Rahul M.</creatorcontrib><creatorcontrib>Parameswaran, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitz, A. T.</au><au>Ma, Han</au><au>Nandkishore, Rahul M.</au><au>Parameswaran, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recoverable information and emergent conservation laws in fracton stabilizer codes</atitle><jtitle>Physical review. B</jtitle><date>2018-04-26</date><risdate>2018</risdate><volume>97</volume><issue>13</issue><artnum>134426</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information and prove their equivalence. To demonstrate its utility, we compute recoverable information for fracton models using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z2 Gauss-law-type constraints, which in turn imply emergent Z2 conservation laws for pointlike quasiparticle excitations of an underlying topologically ordered phase.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.97.134426</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2018-04, Vol.97 (13), Article 134426 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1434816 |
source | American Physical Society Journals |
subjects | Conservation laws Entanglement |
title | Recoverable information and emergent conservation laws in fracton stabilizer codes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A41%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recoverable%20information%20and%20emergent%20conservation%20laws%20in%20fracton%20stabilizer%20codes&rft.jtitle=Physical%20review.%20B&rft.au=Schmitz,%20A.%20T.&rft.date=2018-04-26&rft.volume=97&rft.issue=13&rft.artnum=134426&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.97.134426&rft_dat=%3Cproquest_osti_%3E2123172472%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123172472&rft_id=info:pmid/&rfr_iscdi=true |