Recoverable information and emergent conservation laws in fracton stabilizer codes

We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-04, Vol.97 (13), Article 134426
Hauptverfasser: Schmitz, A. T., Ma, Han, Nandkishore, Rahul M., Parameswaran, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a new quantity that we term recoverable information, defined for stabilizer Hamiltonians. For such models, the recoverable information provides a measure of the topological information as well as a physical interpretation, which is complementary to topological entanglement entropy. We discuss three different ways to calculate the recoverable information and prove their equivalence. To demonstrate its utility, we compute recoverable information for fracton models using all three methods where appropriate. From the recoverable information, we deduce the existence of emergent Z2 Gauss-law-type constraints, which in turn imply emergent Z2 conservation laws for pointlike quasiparticle excitations of an underlying topologically ordered phase.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.97.134426