Reconfigurable Printed Liquids
Liquids lack the spatial order required for advanced functionality. Interfacial assemblies of colloids, however, can be used to shape liquids into complex, 3D objects, simultaneously forming 2D layers with novel magnetic, plasmonic, or structural properties. Fully exploiting all‐liquid systems that...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2018-04, Vol.30 (16), p.e1707603-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | e1707603 |
container_title | Advanced materials (Weinheim) |
container_volume | 30 |
creator | Forth, Joe Liu, Xubo Hasnain, Jaffar Toor, Anju Miszta, Karol Shi, Shaowei Geissler, Phillip L. Emrick, Todd Helms, Brett A. Russell, Thomas P. |
description | Liquids lack the spatial order required for advanced functionality. Interfacial assemblies of colloids, however, can be used to shape liquids into complex, 3D objects, simultaneously forming 2D layers with novel magnetic, plasmonic, or structural properties. Fully exploiting all‐liquid systems that are structured by their interfaces would create a new class of biomimetic, reconfigurable, and responsive materials. Here, printed constructs of water in oil are presented. Both form and function are given to the system by the assembly and jamming of nanoparticle surfactants, formed from the interfacial interaction of nanoparticles and amphiphilic polymers that bear complementary functional groups. These yield dissipative constructs that exhibit a compartmentalized response to chemical cues. Potential applications include biphasic reaction vessels, liquid electronics, novel media for the encapsulation of cells and active matter, and dynamic constructs that both alter, and are altered by, their external environment.
The assembly of gold, silica, and cellulose nanoparticles at the oil–water interface is used to 3D print water in oil. The diameter of the channels is between 10 and 1000 µm. Liquids can be readily flowed through the channels. The shapes are highly deformable and their lifetime can be tuned from hours to months. |
doi_str_mv | 10.1002/adma.201707603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1434175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2027484135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5193-f050e3bf6ee1bf01fc1d55c672cd59c8739337a5bd52d3a9931952759b052a013</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EoqWwMlYVLCwpZzuO47Eqn1IRCMFsObYDrvLR2olQ_z2pUorEwnTLu6e7h9A5hikGINfKlGpKAHPgCdADNMSM4CgGwQ7REARlkUjidIBOQlgCgEggOUYDIhinRNAhGr9aXVe5-2i9ygo7efGuaqyZLNy6dSacoqNcFcGe7eYIvd_dvs0fosXz_eN8tog0w4JGOTCwNMsTa3GWA841NozphBNtmNApp4JSrlhmGDFUCUGxYIQzkQEjCjAdoYveW4fGyaBdY_Vnd1hldSNxTGPMWQdd9dDK1-vWhkaWLmhbFKqydRtklyEFElOSdOjlH3RZt77qXugowuM0xnQrnPaU9nUI3uZy5V2p_EZikNu8cptX7vN2C-Odts1Ka_b4T88OED3w5Qq7-UcnZzdPs1_5N0evgqI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2027484135</pqid></control><display><type>article</type><title>Reconfigurable Printed Liquids</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Forth, Joe ; Liu, Xubo ; Hasnain, Jaffar ; Toor, Anju ; Miszta, Karol ; Shi, Shaowei ; Geissler, Phillip L. ; Emrick, Todd ; Helms, Brett A. ; Russell, Thomas P.</creator><creatorcontrib>Forth, Joe ; Liu, Xubo ; Hasnain, Jaffar ; Toor, Anju ; Miszta, Karol ; Shi, Shaowei ; Geissler, Phillip L. ; Emrick, Todd ; Helms, Brett A. ; Russell, Thomas P.</creatorcontrib><description>Liquids lack the spatial order required for advanced functionality. Interfacial assemblies of colloids, however, can be used to shape liquids into complex, 3D objects, simultaneously forming 2D layers with novel magnetic, plasmonic, or structural properties. Fully exploiting all‐liquid systems that are structured by their interfaces would create a new class of biomimetic, reconfigurable, and responsive materials. Here, printed constructs of water in oil are presented. Both form and function are given to the system by the assembly and jamming of nanoparticle surfactants, formed from the interfacial interaction of nanoparticles and amphiphilic polymers that bear complementary functional groups. These yield dissipative constructs that exhibit a compartmentalized response to chemical cues. Potential applications include biphasic reaction vessels, liquid electronics, novel media for the encapsulation of cells and active matter, and dynamic constructs that both alter, and are altered by, their external environment.
The assembly of gold, silica, and cellulose nanoparticles at the oil–water interface is used to 3D print water in oil. The diameter of the channels is between 10 and 1000 µm. Liquids can be readily flowed through the channels. The shapes are highly deformable and their lifetime can be tuned from hours to months.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201707603</identifier><identifier>PMID: 29573293</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>3D printing ; Biomimetic materials ; Construction materials ; Functional groups ; interfaces ; Jamming ; Liquids ; Magnetic properties ; Materials science ; Nanoparticles</subject><ispartof>Advanced materials (Weinheim), 2018-04, Vol.30 (16), p.e1707603-n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5193-f050e3bf6ee1bf01fc1d55c672cd59c8739337a5bd52d3a9931952759b052a013</citedby><cites>FETCH-LOGICAL-c5193-f050e3bf6ee1bf01fc1d55c672cd59c8739337a5bd52d3a9931952759b052a013</cites><orcidid>0000-0002-8932-3716 ; 0000000289323716</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201707603$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201707603$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29573293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1434175$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Forth, Joe</creatorcontrib><creatorcontrib>Liu, Xubo</creatorcontrib><creatorcontrib>Hasnain, Jaffar</creatorcontrib><creatorcontrib>Toor, Anju</creatorcontrib><creatorcontrib>Miszta, Karol</creatorcontrib><creatorcontrib>Shi, Shaowei</creatorcontrib><creatorcontrib>Geissler, Phillip L.</creatorcontrib><creatorcontrib>Emrick, Todd</creatorcontrib><creatorcontrib>Helms, Brett A.</creatorcontrib><creatorcontrib>Russell, Thomas P.</creatorcontrib><title>Reconfigurable Printed Liquids</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Liquids lack the spatial order required for advanced functionality. Interfacial assemblies of colloids, however, can be used to shape liquids into complex, 3D objects, simultaneously forming 2D layers with novel magnetic, plasmonic, or structural properties. Fully exploiting all‐liquid systems that are structured by their interfaces would create a new class of biomimetic, reconfigurable, and responsive materials. Here, printed constructs of water in oil are presented. Both form and function are given to the system by the assembly and jamming of nanoparticle surfactants, formed from the interfacial interaction of nanoparticles and amphiphilic polymers that bear complementary functional groups. These yield dissipative constructs that exhibit a compartmentalized response to chemical cues. Potential applications include biphasic reaction vessels, liquid electronics, novel media for the encapsulation of cells and active matter, and dynamic constructs that both alter, and are altered by, their external environment.
The assembly of gold, silica, and cellulose nanoparticles at the oil–water interface is used to 3D print water in oil. The diameter of the channels is between 10 and 1000 µm. Liquids can be readily flowed through the channels. The shapes are highly deformable and their lifetime can be tuned from hours to months.</description><subject>3D printing</subject><subject>Biomimetic materials</subject><subject>Construction materials</subject><subject>Functional groups</subject><subject>interfaces</subject><subject>Jamming</subject><subject>Liquids</subject><subject>Magnetic properties</subject><subject>Materials science</subject><subject>Nanoparticles</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQQC0EoqWwMlYVLCwpZzuO47Eqn1IRCMFsObYDrvLR2olQ_z2pUorEwnTLu6e7h9A5hikGINfKlGpKAHPgCdADNMSM4CgGwQ7REARlkUjidIBOQlgCgEggOUYDIhinRNAhGr9aXVe5-2i9ygo7efGuaqyZLNy6dSacoqNcFcGe7eYIvd_dvs0fosXz_eN8tog0w4JGOTCwNMsTa3GWA841NozphBNtmNApp4JSrlhmGDFUCUGxYIQzkQEjCjAdoYveW4fGyaBdY_Vnd1hldSNxTGPMWQdd9dDK1-vWhkaWLmhbFKqydRtklyEFElOSdOjlH3RZt77qXugowuM0xnQrnPaU9nUI3uZy5V2p_EZikNu8cptX7vN2C-Odts1Ka_b4T88OED3w5Qq7-UcnZzdPs1_5N0evgqI</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Forth, Joe</creator><creator>Liu, Xubo</creator><creator>Hasnain, Jaffar</creator><creator>Toor, Anju</creator><creator>Miszta, Karol</creator><creator>Shi, Shaowei</creator><creator>Geissler, Phillip L.</creator><creator>Emrick, Todd</creator><creator>Helms, Brett A.</creator><creator>Russell, Thomas P.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8932-3716</orcidid><orcidid>https://orcid.org/0000000289323716</orcidid></search><sort><creationdate>201804</creationdate><title>Reconfigurable Printed Liquids</title><author>Forth, Joe ; Liu, Xubo ; Hasnain, Jaffar ; Toor, Anju ; Miszta, Karol ; Shi, Shaowei ; Geissler, Phillip L. ; Emrick, Todd ; Helms, Brett A. ; Russell, Thomas P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5193-f050e3bf6ee1bf01fc1d55c672cd59c8739337a5bd52d3a9931952759b052a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D printing</topic><topic>Biomimetic materials</topic><topic>Construction materials</topic><topic>Functional groups</topic><topic>interfaces</topic><topic>Jamming</topic><topic>Liquids</topic><topic>Magnetic properties</topic><topic>Materials science</topic><topic>Nanoparticles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forth, Joe</creatorcontrib><creatorcontrib>Liu, Xubo</creatorcontrib><creatorcontrib>Hasnain, Jaffar</creatorcontrib><creatorcontrib>Toor, Anju</creatorcontrib><creatorcontrib>Miszta, Karol</creatorcontrib><creatorcontrib>Shi, Shaowei</creatorcontrib><creatorcontrib>Geissler, Phillip L.</creatorcontrib><creatorcontrib>Emrick, Todd</creatorcontrib><creatorcontrib>Helms, Brett A.</creatorcontrib><creatorcontrib>Russell, Thomas P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forth, Joe</au><au>Liu, Xubo</au><au>Hasnain, Jaffar</au><au>Toor, Anju</au><au>Miszta, Karol</au><au>Shi, Shaowei</au><au>Geissler, Phillip L.</au><au>Emrick, Todd</au><au>Helms, Brett A.</au><au>Russell, Thomas P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconfigurable Printed Liquids</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-04</date><risdate>2018</risdate><volume>30</volume><issue>16</issue><spage>e1707603</spage><epage>n/a</epage><pages>e1707603-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Liquids lack the spatial order required for advanced functionality. Interfacial assemblies of colloids, however, can be used to shape liquids into complex, 3D objects, simultaneously forming 2D layers with novel magnetic, plasmonic, or structural properties. Fully exploiting all‐liquid systems that are structured by their interfaces would create a new class of biomimetic, reconfigurable, and responsive materials. Here, printed constructs of water in oil are presented. Both form and function are given to the system by the assembly and jamming of nanoparticle surfactants, formed from the interfacial interaction of nanoparticles and amphiphilic polymers that bear complementary functional groups. These yield dissipative constructs that exhibit a compartmentalized response to chemical cues. Potential applications include biphasic reaction vessels, liquid electronics, novel media for the encapsulation of cells and active matter, and dynamic constructs that both alter, and are altered by, their external environment.
The assembly of gold, silica, and cellulose nanoparticles at the oil–water interface is used to 3D print water in oil. The diameter of the channels is between 10 and 1000 µm. Liquids can be readily flowed through the channels. The shapes are highly deformable and their lifetime can be tuned from hours to months.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29573293</pmid><doi>10.1002/adma.201707603</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8932-3716</orcidid><orcidid>https://orcid.org/0000000289323716</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2018-04, Vol.30 (16), p.e1707603-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_osti_scitechconnect_1434175 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 3D printing Biomimetic materials Construction materials Functional groups interfaces Jamming Liquids Magnetic properties Materials science Nanoparticles |
title | Reconfigurable Printed Liquids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconfigurable%20Printed%20Liquids&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Forth,%20Joe&rft.date=2018-04&rft.volume=30&rft.issue=16&rft.spage=e1707603&rft.epage=n/a&rft.pages=e1707603-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201707603&rft_dat=%3Cproquest_osti_%3E2027484135%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2027484135&rft_id=info:pmid/29573293&rfr_iscdi=true |