Reconfigurable Printed Liquids

Liquids lack the spatial order required for advanced functionality. Interfacial assemblies of colloids, however, can be used to shape liquids into complex, 3D objects, simultaneously forming 2D layers with novel magnetic, plasmonic, or structural properties. Fully exploiting all‐liquid systems that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-04, Vol.30 (16), p.e1707603-n/a
Hauptverfasser: Forth, Joe, Liu, Xubo, Hasnain, Jaffar, Toor, Anju, Miszta, Karol, Shi, Shaowei, Geissler, Phillip L., Emrick, Todd, Helms, Brett A., Russell, Thomas P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liquids lack the spatial order required for advanced functionality. Interfacial assemblies of colloids, however, can be used to shape liquids into complex, 3D objects, simultaneously forming 2D layers with novel magnetic, plasmonic, or structural properties. Fully exploiting all‐liquid systems that are structured by their interfaces would create a new class of biomimetic, reconfigurable, and responsive materials. Here, printed constructs of water in oil are presented. Both form and function are given to the system by the assembly and jamming of nanoparticle surfactants, formed from the interfacial interaction of nanoparticles and amphiphilic polymers that bear complementary functional groups. These yield dissipative constructs that exhibit a compartmentalized response to chemical cues. Potential applications include biphasic reaction vessels, liquid electronics, novel media for the encapsulation of cells and active matter, and dynamic constructs that both alter, and are altered by, their external environment. The assembly of gold, silica, and cellulose nanoparticles at the oil–water interface is used to 3D print water in oil. The diameter of the channels is between 10 and 1000 µm. Liquids can be readily flowed through the channels. The shapes are highly deformable and their lifetime can be tuned from hours to months.
ISSN:0935-9648
1521-4095
DOI:10.1002/adma.201707603