Sinter‐Resistant Platinum Catalyst Supported by Metal–Organic Framework
Single atoms and few‐atom clusters of platinum are uniformly installed on the zirconia nodes of a metal‐organic framework (MOF) NU‐1000 via targeted vapor‐phase synthesis. The catalytic Pt clusters, site‐isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogena...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2018-01, Vol.57 (4), p.909-913 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single atoms and few‐atom clusters of platinum are uniformly installed on the zirconia nodes of a metal‐organic framework (MOF) NU‐1000 via targeted vapor‐phase synthesis. The catalytic Pt clusters, site‐isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few‐atom clusters that depend upon synthesis conditions. Operando X‐ray absorption spectroscopy and X‐ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size‐selected clusters, including noble metals, on a high surface area support.
Resistance is useful: Platinum nanoclusters installed on metal–organic frameworks (MOFs) via targeted vapor‐phase synthesis exhibit sinter‐resistance upon ethylene hydrogenation up to 200 °C. Operando EXAFS analysis reveals a coordination environment which remains unchanged under the strongly exothermic hydrogenation reaction of ethylene, ALD=atomic layer deposition. |
---|---|
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201708092 |