Optimization of Potent and Selective Tricyclic Indole Diazepinone Myeloid Cell Leukemia‑1 Inhibitors Using Structure-Based Design
Myeloid cell leukemia 1 (Mcl-1), an antiapoptotic member of the Bcl-2 family of proteins, has emerged as an attractive target for cancer therapy. Mcl-1 upregulation is often found in many human cancers and is associated with high tumor grade, poor survival, and resistance to chemotherapy. Here, we d...
Gespeichert in:
Veröffentlicht in: | Journal of medicinal chemistry 2018-03, Vol.61 (6), p.2410-2421 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Myeloid cell leukemia 1 (Mcl-1), an antiapoptotic member of the Bcl-2 family of proteins, has emerged as an attractive target for cancer therapy. Mcl-1 upregulation is often found in many human cancers and is associated with high tumor grade, poor survival, and resistance to chemotherapy. Here, we describe a series of potent and selective tricyclic indole diazepinone Mcl-1 inhibitors that were discovered and further optimized using structure-based design. These compounds exhibit picomolar binding affinity and mechanism-based cellular efficacy, including growth inhibition and caspase induction in Mcl-1-sensitive cells. Thus, they represent useful compounds to study the implication of Mcl-1 inhibition in cancer and serve as potentially useful starting points toward the discovery of anti-Mcl-1 therapeutics. |
---|---|
ISSN: | 0022-2623 1520-4804 |
DOI: | 10.1021/acs.jmedchem.7b01155 |