Development of a research reactor protocol for neutron multiplication measurements

A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in nuclear energy (New series) 2018-07, Vol.106, p.120-139
Hauptverfasser: Arthur, Jennifer, Bahran, Rian, Hutchinson, Jesson, Sood, Avneet, Thompson, Nicholas, Pozzi, Sara A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new series of subcritical measurements has been conducted at the zero-power Walthousen Reactor Critical Facility (RCF) at Rensselaer Polytechnic Institute (RPI) using a 3He neutron multiplicity detector. The Critical and Subcritical 0-Power Experiment at Rensselaer (CaSPER) campaign establishes a protocol for advanced subcritical neutron multiplication measurements involving research reactors for validation of neutron multiplication inference techniques, Monte Carlo codes, and associated nuclear data. There has been increased attention and expanded efforts related to subcritical measurements and analyses, and this work provides yet another data set at known reactivity states that can be used in the validation of state-of-the-art Monte Carlo computer simulation tools. The diverse (mass, spatial, spectral) subcritical measurement configurations have been analyzed to produce parameters of interest such as singles rates, doubles rates, and leakage multiplication. MCNP®6.2 was used to simulate the experiment and the resulting simulated data has been compared to the measured results. Comparison of the simulated and measured observables (singles rates, doubles rates, and leakage multiplication) show good agreement. This work builds upon the previous years of collaborative subcritical experiments and outlines a protocol for future subcritical neutron multiplication inference and subcriticality monitoring measurements on pool-type reactor systems.
ISSN:0149-1970
1878-4224
DOI:10.1016/j.pnucene.2018.02.024