Diffusion of Sticky Nanoparticles in a Polymer Melt: Crossover from Suppressed to Enhanced Transport

The self-diffusion of a single large particle in a fluid is usually described by the classic Stokes–Einstein (SE) hydrodynamic relation. However, there are many fluids where the SE prediction for nanoparticles diffusion fails. These systems include diffusion of nanoparticles in porous media, in enta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecules 2018-03, Vol.51 (6), p.2268-2275
Hauptverfasser: Carroll, Bobby, Bocharova, Vera, Carrillo, Jan-Michael Y, Kisliuk, Alexander, Cheng, Shiwang, Yamamoto, Umi, Schweizer, Kenneth S, Sumpter, Bobby G, Sokolov, Alexei P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The self-diffusion of a single large particle in a fluid is usually described by the classic Stokes–Einstein (SE) hydrodynamic relation. However, there are many fluids where the SE prediction for nanoparticles diffusion fails. These systems include diffusion of nanoparticles in porous media, in entangled and unentangled polymer melts and solutions, and protein diffusion in biological environments. A fundamental understanding of the microscopic parameters that govern nanoparticle diffusion is relevant to a wide range of applications. In this work, we present experimental measurements of the tracer diffusion coefficient of small and large nanoparticles that experience strong attractions with unentangled and entangled polymer melt matrices. For the small nanoparticle system, a crossover from suppressed to enhanced diffusion is observed with increasing polymer molecular weight. We interpret these observations based on our theoretical and simulation insights of the preceding article (paper 1) as a result of a crossover from an effective hydrodynamic core–shell to a nonhydrodynamic vehicle mechanism of transport, with the latter strongly dependent on polymer–nanoparticle desorption time. A general zeroth-order qualitative picture for small sticky nanoparticle diffusion in polymer melts is proposed.
ISSN:0024-9297
1520-5835
DOI:10.1021/acs.macromol.7b02695