New Rh2(II,II) Complexes for Solar Energy Applications: Panchromatic Absorption and Excited-State Reactivity
The new heteroleptic paddlewheel complexes cis-[Rh2(μ-form)2(μ-np)2][BF4]2, where form = p-ditolylformamidinate (DTolF) or p-difluorobenzylformamidinate (F-form) and np = 1,8-napthyridyine, and cis-Rh2(μ-form)2(μ-npCOO)2 (npCOO– = 1,8-naphthyridine-2-carboxylate), were synthesized and characterized...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2017-10, Vol.139 (41), p.14724-14732 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The new heteroleptic paddlewheel complexes cis-[Rh2(μ-form)2(μ-np)2][BF4]2, where form = p-ditolylformamidinate (DTolF) or p-difluorobenzylformamidinate (F-form) and np = 1,8-napthyridyine, and cis-Rh2(μ-form)2(μ-npCOO)2 (npCOO– = 1,8-naphthyridine-2-carboxylate), were synthesized and characterized. The complexes absorb strongly throughout the ultraviolet (λmax = 300 nm, ε = 20 300 M–1 cm–1) and visible regions (λmax = 640 nm ε = 3500 M–1 cm–1), making them potentially useful new dyes with panchromatic light absorption for solar energy conversion applications. Ultrafast and nanosecond transient absorption and time-resolved infrared spectroscopies were used to characterize the identity and dynamics of the excited states, where singlet and triplet Rh2/form-to-naphthyridine, metal/ligand-to-ligand charge-transfer (ML-LCT) excited states were observed in all four complexes. The npCOO– complexes exhibit red-shifted absorption profiles extending into the near-IR and undergo photoinitiated electron transfer to generate reduced methyl viologen, a species that persists in the presence of a sacrificial donor. The energy of the triplet excited state of each complex was estimated from energy-transfer quenching experiments using a series of organic triplet donors (E(3ππ*) from 1.83 to 0.78 eV). The singlet reduction (+0.6 V vs Ag/AgCl) potentials, and singlet and triplet oxidation potentials (−1.1 and −0.5 V vs Ag/AgCl, respectively) were determined. Based on the excited-state lifetimes and redox properties, these complexes represent a new class of light absorbers with potential application as dyes for charge injection into semiconductor solar cells and in sensitizer-catalyst assemblies for photocatalysis that operate with irradiation from the ultraviolet to ∼800 nm. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.7b08489 |