Epitaxial Heusler superlattice Co 2 MnAl / Fe 2 MnAl with perpendicular magnetic anisotropy and termination-dependent half-metallicity

Single-crystal Heusler atomic-scale superlattices that have been predicted to exhibit perpendicular magnetic anisotropy and half-metallicity have been successfully grown by molecular beam epitaxy. Superlattices consisting of full-Heusler Co 2 MnAl and Fe 2 MnAl with one-to three-unit-cell periodicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review materials 2018-03, Vol.2 (3), Article 034402
Hauptverfasser: Brown-Heft, Tobias L., Logan, John A., McFadden, Anthony P., Guillemard, Charles, Le Fèvre, Patrick, Bertran, François, Andrieu, Stéphane, Palmstrøm, Chris J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physical review materials
container_volume 2
creator Brown-Heft, Tobias L.
Logan, John A.
McFadden, Anthony P.
Guillemard, Charles
Le Fèvre, Patrick
Bertran, François
Andrieu, Stéphane
Palmstrøm, Chris J.
description Single-crystal Heusler atomic-scale superlattices that have been predicted to exhibit perpendicular magnetic anisotropy and half-metallicity have been successfully grown by molecular beam epitaxy. Superlattices consisting of full-Heusler Co 2 MnAl and Fe 2 MnAl with one-to three-unit-cell periodicity were grown on GaAs (001), MgO (001), and Cr (001)/MgO (001). Electron-energy-loss spectroscopy maps confirmed clearly segregated epitaxial Heusler layers with high cobalt or high iron concentrations for samples grown near room temperature on GaAs (001). Superlattice structures grown with an excess of aluminum had significantly lower thin-film shape anisotropy and resulted in an out-of-plane spin reorientation transition at temperatures below 200 K for samples grown on GaAs (001). Synchrotron-based spin-resolved photoemission spectroscopy found that the superlattice structure improves the Fermi-level spin polarization near the X point in the bulk Brillouin zone. Stoichiometric Co 2 MnAl terminated superlattice grown on MgO (001) had a spin polarization of 95%, while a pure Co 2 MnAl film had a spin polarization of only 65%.
doi_str_mv 10.1103/PhysRevMaterials.2.034402
format Article
fullrecord <record><control><sourceid>hal_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1425988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04064703v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1678-677d2ed3293647fd339357c5f6e2d017c6ae5345de039572f385a3383a014f2f3</originalsourceid><addsrcrecordid>eNpdkV1LwzAUhosoOOb-Q_TOi275aJr2cozNCRuK6HUI6amNtGlJsun-gL_bjKmIV3lzeN7zwZsk1wRPCcFs9tgc_BPstyqAM6r1UzrFLMswPUtGNBM8LUvOzv_oy2Ti_RvGmBScUFGOks_lYIL6iG60hp1vwSG_G8C1KgSjAS16RNHWzls0Qyv40e8mNChSA9jK6F2rHOrUq4VoQcoa3wfXD4coKxRX64xVwfQ2reBoABtQo9o67SCotjXahMNVclHHA2Dy_Y6Tl9XyebFONw9394v5JtUkF0WaC1FRqBgtWZ6JumKsZFxoXudAK0yEzhVwlvEKMCu5oDUruGKsYAqTrI7fcXJz6tv7YKSPo0E3urcWdJAko7wsigjdnqC4pRyc6ZQ7yF4ZuZ5v5LGGMxzHY7YnkS1PrHa99w7qXwPB8hiS_B-SpPIUEvsCHuuKXQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Epitaxial Heusler superlattice Co 2 MnAl / Fe 2 MnAl with perpendicular magnetic anisotropy and termination-dependent half-metallicity</title><source>American Physical Society Journals</source><creator>Brown-Heft, Tobias L. ; Logan, John A. ; McFadden, Anthony P. ; Guillemard, Charles ; Le Fèvre, Patrick ; Bertran, François ; Andrieu, Stéphane ; Palmstrøm, Chris J.</creator><creatorcontrib>Brown-Heft, Tobias L. ; Logan, John A. ; McFadden, Anthony P. ; Guillemard, Charles ; Le Fèvre, Patrick ; Bertran, François ; Andrieu, Stéphane ; Palmstrøm, Chris J.</creatorcontrib><description>Single-crystal Heusler atomic-scale superlattices that have been predicted to exhibit perpendicular magnetic anisotropy and half-metallicity have been successfully grown by molecular beam epitaxy. Superlattices consisting of full-Heusler Co 2 MnAl and Fe 2 MnAl with one-to three-unit-cell periodicity were grown on GaAs (001), MgO (001), and Cr (001)/MgO (001). Electron-energy-loss spectroscopy maps confirmed clearly segregated epitaxial Heusler layers with high cobalt or high iron concentrations for samples grown near room temperature on GaAs (001). Superlattice structures grown with an excess of aluminum had significantly lower thin-film shape anisotropy and resulted in an out-of-plane spin reorientation transition at temperatures below 200 K for samples grown on GaAs (001). Synchrotron-based spin-resolved photoemission spectroscopy found that the superlattice structure improves the Fermi-level spin polarization near the X point in the bulk Brillouin zone. Stoichiometric Co 2 MnAl terminated superlattice grown on MgO (001) had a spin polarization of 95%, while a pure Co 2 MnAl film had a spin polarization of only 65%.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.2.034402</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Condensed Matter ; Materials Science ; Physics</subject><ispartof>Physical review materials, 2018-03, Vol.2 (3), Article 034402</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1678-677d2ed3293647fd339357c5f6e2d017c6ae5345de039572f385a3383a014f2f3</citedby><cites>FETCH-LOGICAL-c1678-677d2ed3293647fd339357c5f6e2d017c6ae5345de039572f385a3383a014f2f3</cites><orcidid>0000-0001-9800-8059 ; 0000-0002-2416-0514 ; 0000-0002-3347-0047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04064703$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1425988$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brown-Heft, Tobias L.</creatorcontrib><creatorcontrib>Logan, John A.</creatorcontrib><creatorcontrib>McFadden, Anthony P.</creatorcontrib><creatorcontrib>Guillemard, Charles</creatorcontrib><creatorcontrib>Le Fèvre, Patrick</creatorcontrib><creatorcontrib>Bertran, François</creatorcontrib><creatorcontrib>Andrieu, Stéphane</creatorcontrib><creatorcontrib>Palmstrøm, Chris J.</creatorcontrib><title>Epitaxial Heusler superlattice Co 2 MnAl / Fe 2 MnAl with perpendicular magnetic anisotropy and termination-dependent half-metallicity</title><title>Physical review materials</title><description>Single-crystal Heusler atomic-scale superlattices that have been predicted to exhibit perpendicular magnetic anisotropy and half-metallicity have been successfully grown by molecular beam epitaxy. Superlattices consisting of full-Heusler Co 2 MnAl and Fe 2 MnAl with one-to three-unit-cell periodicity were grown on GaAs (001), MgO (001), and Cr (001)/MgO (001). Electron-energy-loss spectroscopy maps confirmed clearly segregated epitaxial Heusler layers with high cobalt or high iron concentrations for samples grown near room temperature on GaAs (001). Superlattice structures grown with an excess of aluminum had significantly lower thin-film shape anisotropy and resulted in an out-of-plane spin reorientation transition at temperatures below 200 K for samples grown on GaAs (001). Synchrotron-based spin-resolved photoemission spectroscopy found that the superlattice structure improves the Fermi-level spin polarization near the X point in the bulk Brillouin zone. Stoichiometric Co 2 MnAl terminated superlattice grown on MgO (001) had a spin polarization of 95%, while a pure Co 2 MnAl film had a spin polarization of only 65%.</description><subject>Condensed Matter</subject><subject>Materials Science</subject><subject>Physics</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkV1LwzAUhosoOOb-Q_TOi275aJr2cozNCRuK6HUI6amNtGlJsun-gL_bjKmIV3lzeN7zwZsk1wRPCcFs9tgc_BPstyqAM6r1UzrFLMswPUtGNBM8LUvOzv_oy2Ti_RvGmBScUFGOks_lYIL6iG60hp1vwSG_G8C1KgSjAS16RNHWzls0Qyv40e8mNChSA9jK6F2rHOrUq4VoQcoa3wfXD4coKxRX64xVwfQ2reBoABtQo9o67SCotjXahMNVclHHA2Dy_Y6Tl9XyebFONw9394v5JtUkF0WaC1FRqBgtWZ6JumKsZFxoXudAK0yEzhVwlvEKMCu5oDUruGKsYAqTrI7fcXJz6tv7YKSPo0E3urcWdJAko7wsigjdnqC4pRyc6ZQ7yF4ZuZ5v5LGGMxzHY7YnkS1PrHa99w7qXwPB8hiS_B-SpPIUEvsCHuuKXQ</recordid><startdate>20180313</startdate><enddate>20180313</enddate><creator>Brown-Heft, Tobias L.</creator><creator>Logan, John A.</creator><creator>McFadden, Anthony P.</creator><creator>Guillemard, Charles</creator><creator>Le Fèvre, Patrick</creator><creator>Bertran, François</creator><creator>Andrieu, Stéphane</creator><creator>Palmstrøm, Chris J.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9800-8059</orcidid><orcidid>https://orcid.org/0000-0002-2416-0514</orcidid><orcidid>https://orcid.org/0000-0002-3347-0047</orcidid></search><sort><creationdate>20180313</creationdate><title>Epitaxial Heusler superlattice Co 2 MnAl / Fe 2 MnAl with perpendicular magnetic anisotropy and termination-dependent half-metallicity</title><author>Brown-Heft, Tobias L. ; Logan, John A. ; McFadden, Anthony P. ; Guillemard, Charles ; Le Fèvre, Patrick ; Bertran, François ; Andrieu, Stéphane ; Palmstrøm, Chris J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1678-677d2ed3293647fd339357c5f6e2d017c6ae5345de039572f385a3383a014f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Condensed Matter</topic><topic>Materials Science</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brown-Heft, Tobias L.</creatorcontrib><creatorcontrib>Logan, John A.</creatorcontrib><creatorcontrib>McFadden, Anthony P.</creatorcontrib><creatorcontrib>Guillemard, Charles</creatorcontrib><creatorcontrib>Le Fèvre, Patrick</creatorcontrib><creatorcontrib>Bertran, François</creatorcontrib><creatorcontrib>Andrieu, Stéphane</creatorcontrib><creatorcontrib>Palmstrøm, Chris J.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brown-Heft, Tobias L.</au><au>Logan, John A.</au><au>McFadden, Anthony P.</au><au>Guillemard, Charles</au><au>Le Fèvre, Patrick</au><au>Bertran, François</au><au>Andrieu, Stéphane</au><au>Palmstrøm, Chris J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epitaxial Heusler superlattice Co 2 MnAl / Fe 2 MnAl with perpendicular magnetic anisotropy and termination-dependent half-metallicity</atitle><jtitle>Physical review materials</jtitle><date>2018-03-13</date><risdate>2018</risdate><volume>2</volume><issue>3</issue><artnum>034402</artnum><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>Single-crystal Heusler atomic-scale superlattices that have been predicted to exhibit perpendicular magnetic anisotropy and half-metallicity have been successfully grown by molecular beam epitaxy. Superlattices consisting of full-Heusler Co 2 MnAl and Fe 2 MnAl with one-to three-unit-cell periodicity were grown on GaAs (001), MgO (001), and Cr (001)/MgO (001). Electron-energy-loss spectroscopy maps confirmed clearly segregated epitaxial Heusler layers with high cobalt or high iron concentrations for samples grown near room temperature on GaAs (001). Superlattice structures grown with an excess of aluminum had significantly lower thin-film shape anisotropy and resulted in an out-of-plane spin reorientation transition at temperatures below 200 K for samples grown on GaAs (001). Synchrotron-based spin-resolved photoemission spectroscopy found that the superlattice structure improves the Fermi-level spin polarization near the X point in the bulk Brillouin zone. Stoichiometric Co 2 MnAl terminated superlattice grown on MgO (001) had a spin polarization of 95%, while a pure Co 2 MnAl film had a spin polarization of only 65%.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevMaterials.2.034402</doi><orcidid>https://orcid.org/0000-0001-9800-8059</orcidid><orcidid>https://orcid.org/0000-0002-2416-0514</orcidid><orcidid>https://orcid.org/0000-0002-3347-0047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-9953
ispartof Physical review materials, 2018-03, Vol.2 (3), Article 034402
issn 2475-9953
2475-9953
language eng
recordid cdi_osti_scitechconnect_1425988
source American Physical Society Journals
subjects Condensed Matter
Materials Science
Physics
title Epitaxial Heusler superlattice Co 2 MnAl / Fe 2 MnAl with perpendicular magnetic anisotropy and termination-dependent half-metallicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epitaxial%20Heusler%20superlattice%20Co%202%20MnAl%20/%20Fe%202%20MnAl%20with%20perpendicular%20magnetic%20anisotropy%20and%20termination-dependent%20half-metallicity&rft.jtitle=Physical%20review%20materials&rft.au=Brown-Heft,%20Tobias%20L.&rft.date=2018-03-13&rft.volume=2&rft.issue=3&rft.artnum=034402&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.2.034402&rft_dat=%3Chal_osti_%3Eoai_HAL_hal_04064703v1%3C/hal_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true