Epitaxial Heusler superlattice Co 2 MnAl / Fe 2 MnAl with perpendicular magnetic anisotropy and termination-dependent half-metallicity

Single-crystal Heusler atomic-scale superlattices that have been predicted to exhibit perpendicular magnetic anisotropy and half-metallicity have been successfully grown by molecular beam epitaxy. Superlattices consisting of full-Heusler Co 2 MnAl and Fe 2 MnAl with one-to three-unit-cell periodicit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review materials 2018-03, Vol.2 (3), Article 034402
Hauptverfasser: Brown-Heft, Tobias L., Logan, John A., McFadden, Anthony P., Guillemard, Charles, Le Fèvre, Patrick, Bertran, François, Andrieu, Stéphane, Palmstrøm, Chris J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Single-crystal Heusler atomic-scale superlattices that have been predicted to exhibit perpendicular magnetic anisotropy and half-metallicity have been successfully grown by molecular beam epitaxy. Superlattices consisting of full-Heusler Co 2 MnAl and Fe 2 MnAl with one-to three-unit-cell periodicity were grown on GaAs (001), MgO (001), and Cr (001)/MgO (001). Electron-energy-loss spectroscopy maps confirmed clearly segregated epitaxial Heusler layers with high cobalt or high iron concentrations for samples grown near room temperature on GaAs (001). Superlattice structures grown with an excess of aluminum had significantly lower thin-film shape anisotropy and resulted in an out-of-plane spin reorientation transition at temperatures below 200 K for samples grown on GaAs (001). Synchrotron-based spin-resolved photoemission spectroscopy found that the superlattice structure improves the Fermi-level spin polarization near the X point in the bulk Brillouin zone. Stoichiometric Co 2 MnAl terminated superlattice grown on MgO (001) had a spin polarization of 95%, while a pure Co 2 MnAl film had a spin polarization of only 65%.
ISSN:2475-9953
2475-9953
DOI:10.1103/PhysRevMaterials.2.034402