Collisionless magnetic reconnection in curved spacetime and the effect of black hole rotation

Magnetic reconnection in curved spacetime is studied by adopting a general-relativistic magnetohydrodynamic model that retains collisionless effects for both electron-ion and pair plasmas. A simple generalization of the standard Sweet-Parker model allows us to obtain the first-order effects of the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-02, Vol.97 (4), Article 043007
Hauptverfasser: Comisso, Luca, Asenjo, Felipe A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetic reconnection in curved spacetime is studied by adopting a general-relativistic magnetohydrodynamic model that retains collisionless effects for both electron-ion and pair plasmas. A simple generalization of the standard Sweet-Parker model allows us to obtain the first-order effects of the gravitational field of a rotating black hole. It is shown that the black hole rotation acts to increase the length of azimuthal reconnection layers, thus leading to a decrease of the reconnection rate. However, when coupled to collisionless thermal-inertial effects, the net reconnection rate is enhanced with respect to what would happen in a purely collisional plasma due to a broadening of the reconnection layer. These findings identify an underlying interaction between gravity and collisionless magnetic reconnection in the vicinity of compact objects.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.97.043007