Thermally Rearranged Polymer Membranes Containing Tröger's Base Units Have Exceptional Performance for Air Separations

The influence of segmental chain motion on the gas separation performance of thermally rearranged (TR) polymer membranes is established for TR polybenzoxazoles featuring Tröger's base (TB) monomer subunits as exceptionally rigid sites of contortion along the polymer backbone. These polymers are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2018-04, Vol.57 (18), p.4912-4916
Hauptverfasser: Meckler, Stephen M., Bachman, Jonathan E., Robertson, Benjamin P., Zhu, Chenhui, Long, Jeffrey R., Helms, Brett A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The influence of segmental chain motion on the gas separation performance of thermally rearranged (TR) polymer membranes is established for TR polybenzoxazoles featuring Tröger's base (TB) monomer subunits as exceptionally rigid sites of contortion along the polymer backbone. These polymers are accessed from solution‐processable ortho‐acetate functionalized polyimides, which are readily synthesized as high‐molecular‐weight polymers for membrane casting. We find that thermal rearrangement leads to a small increase in d‐spacing between polymer chains and a dramatic pore‐network reconfiguration that increases both membrane permeability and O2/N2 selectivity, putting its performance above the 2015 upper bound. All about that base: A thermally rearranged polybenzoxazole membrane incorporates a rigid Tröger's base site of contortion. Porosimetry and X‐ray scattering reveal an evolution in the membrane micropore network with thermal rearrangement that leads to state‐of‐the‐art performance for air separations.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201800556