Effect of atomic order/disorder on vacancy clustering in concentrated NiFe alloys

[Display omitted] Using molecular dynamics simulations, we elucidate the effect of atomic structure on vacancy clustering in ordered (L10) and random NiFe. Based on our simulations, we predict the vacancy evolution to be in complete contrast between the two systems. While large vacancy clusters, i.e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2018-05, Vol.147, p.194-203
Hauptverfasser: Chakraborty, D., Harms, A., Ullah, Mohammad W., Weber, W.J., Aidhy, D.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Using molecular dynamics simulations, we elucidate the effect of atomic structure on vacancy clustering in ordered (L10) and random NiFe. Based on our simulations, we predict the vacancy evolution to be in complete contrast between the two systems. While large vacancy clusters, i.e., stacking fault tetrahedra (SFT) are formed in the random structure, no clustering is observed in the ordered-L10 structure. Similar simulations are performed on L10-CuAu and L10-TiAl to understand whether SFT formation is generic in L10 structures, or is specific to NiFe. Both materials show SFT formation, thereby highlighting specific defect energetics in L10 NiFe that lead to the lack of vacancy clustering. We elucidate that L10-NiFe has unique thermodynamic and kinetic defect energetics, i.e., antisite energies, vacancy sublattice preference, and directional migration energy barriers that collectively lead to the lack of vacancy clustering. Understanding such defect energetics could open avenues to prevent defect clustering in the vision towards development of radiation-tolerant concentrated alloys for nuclear reactor applications.
ISSN:0927-0256
1879-0801
DOI:10.1016/j.commatsci.2018.02.011