Switchgrass rhizospheres stimulate microbial biomass but deplete microbial necromass in agricultural soils of the upper Midwest, USA
Rhizosphere microbial communities play an essential role in determining plant productivity, particularly in agriculturally marginal environments. Perennial plants like switchgrass (Panicum virgatum) are thought to particularly influence microbial community composition and function within their rhizo...
Gespeichert in:
Veröffentlicht in: | Soil biology & biochemistry 2015-12, Vol.94 (C) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Rhizosphere microbial communities play an essential role in determining plant productivity, particularly in agriculturally marginal environments. Perennial plants like switchgrass (Panicum virgatum) are thought to particularly influence microbial community composition and function within their rhizosphere. We compared microbial communities in switchgrass rhizospheres and their associated bulk soils in two regions of the U.S. upper Midwest (Michigan and Wisconsin) with contrasting soil types, and at two site types with differing switchgrass establishment ages and management intensities. We characterized microbial communities with a range of culture-independent methods, including amplicon sequencing of 16S/18S rRNA and nifH genes, and membrane lipid profiling. In addition, we quantified abundances of soil amino sugars, a time-integrative indicator of microbial necromass. We found that amino sugar contents and microbial lipid profiles differed between rhizosphere and bulk soils, while DNA-based assays did not provide this discriminatory power. Differences between rhizosphere and bulk soils were not significantly affected by region or site type. Rhizosphere soils had higher microbial lipid abundances, particularly those associated with arbuscular mycorrhizal fungi and Gram-negative bacteria, while amino sugar abundances decreased in the rhizosphere. In conclusion, our findings suggest switchgrass rhizospheres systematically stimulate microbial growth and microbial residue turnover. |
---|---|
ISSN: | 0038-0717 1879-3428 |