Metal plasticity and ductile fracture modeling for cast aluminum alloy parts

In this study, plasticity and ductile fracture properties were characterized by performing various tension, shear, and compression tests. A series of 10 experiments were performed using notched round bars, flat-grooved plates, in-plane shear plates, and cylindrical bars. Two cast aluminum alloys use...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials processing technology 2018-05, Vol.255, p.584-595
Hauptverfasser: Lee, Jinwoo, Kim, Se-Jong, Park, Hyeonil, Bong, Hyuk Jong, Kim, Daeyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, plasticity and ductile fracture properties were characterized by performing various tension, shear, and compression tests. A series of 10 experiments were performed using notched round bars, flat-grooved plates, in-plane shear plates, and cylindrical bars. Two cast aluminum alloys used in automotive suspension systems were selected. Plasticity modeling was performed and the results were compared with experimental and corresponding simulation results; further, the relationships among the stress triaxiality, Lode angle parameter, and equivalent plastic strain at the onset of failure were determined to calibrate a ductile fracture model. The proposed ductile fracture model shows good agreement with experimental results.
ISSN:0924-0136
1873-4774
DOI:10.1016/j.jmatprotec.2017.12.040