Metal and Metal Oxide Interactions and Their Catalytic Consequences for Oxygen Reduction Reaction

Many industrial catalysts are composed of metal particles supported on metal oxides (MMO). It is known that the catalytic activity of MMO materials is governed by metal and metal oxide interactions (MMOI), but how to optimize MMO systems via manipulation of MMOI remains unclear, due primarily to the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2017-06, Vol.139 (23), p.7893-7903
Hauptverfasser: Jia, Qingying, Ghoshal, Shraboni, Li, Jingkun, Liang, Wentao, Meng, Guangnan, Che, Haiying, Zhang, Shiming, Ma, Zi-Feng, Mukerjee, Sanjeev
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many industrial catalysts are composed of metal particles supported on metal oxides (MMO). It is known that the catalytic activity of MMO materials is governed by metal and metal oxide interactions (MMOI), but how to optimize MMO systems via manipulation of MMOI remains unclear, due primarily to the ambiguous nature of MMOI. Herein, we develop a Pt/NbO x /C system with tunable structural and electronic properties via a modified arc plasma deposition method. We unravel the nature of MMOI by characterizing this system under reactive conditions utilizing combined electrochemical, microscopy, and in situ spectroscopy. We show that Pt interacts with the Nb in unsaturated NbO x owing to the oxygen deficiency in the MMO interface, whereas Pt interacts with the O in nearly saturated NbO x , and further interacts with Nb when the oxygen atoms penetrate into the Pt cluster at elevated potentials. While the Pt–Nb interactions do not benefit the inherent activity of Pt toward oxygen reduction reaction (ORR), the Pt–O interactions improve the ORR activity by shortening the Pt–Pt bond distance. Pt donates electrons to NbO x in both Pt–Nb and Pt–O cases. The resultant electron eficiency stabilizes low-coordinated Pt sites, hereby stabilizing small Pt particles. This determines the two characteristic features of MMO systems: dispersion of small metal particles and high catalytic durability. These findings contribute to our understandings of MMO catalytic systems.
ISSN:0002-7863
1520-5126
DOI:10.1021/jacs.7b02378