Liquid-Phase Exfoliation into Monolayered BiOBr Nanosheets for Photocatalytic Oxidation and Reduction

Monolayered photocatalytic materials have attracted huge research interests in terms of their large specific surface area and ample active sites. Sillén-structured layered BiOX (X = Cl, Br, I) casts great prospects owing to their strong photo-oxidation ability and high stability. Fabrication of mon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2017-11, Vol.5 (11), p.10499-10508
Hauptverfasser: Yu, Hongjian, Huang, Hongwei, Xu, Kang, Hao, Weichang, Guo, Yuxi, Wang, Shuobo, Shen, Xiulin, Pan, Shaofeng, Zhang, Yihe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monolayered photocatalytic materials have attracted huge research interests in terms of their large specific surface area and ample active sites. Sillén-structured layered BiOX (X = Cl, Br, I) casts great prospects owing to their strong photo-oxidation ability and high stability. Fabrication of monolayered BiOX by a facile, low-cost, and scalable approach is highly challenging and anticipated. Herein, we describe the large-scale preparation of monolayered BiOBr nanosheets with a thickness of ∼0.85 nm via a readily achievable liquid-phase exfoliation strategy with assistance of formamide at ambient conditions. The as-obtained monolayered BiOBr nanosheets are allowed diverse superiorities, such as enhanced specific surface area, promoted band structure, and strengthened charge separation. Profiting from these benefits, the advanced BiOBr monolayers not only show excellent adsorption and photodegradation performance for treating contaminants, but also demonstrate a greatly promoted photocatalytic activity for CO2 reduction into CO and CH4. Additionally, monolayered BiOI nanosheets have also been obtained by the same synthetic approach. Our work offers a mild and general approach for preparation of monolayered BiOX, and may have huge potential to be extended to the synthesis of other single-layer two-dimensional materials.
ISSN:2168-0485
2168-0485
DOI:10.1021/acssuschemeng.7b02508