Preliminary research on dual-energy X-ray phase-contrast imaging

Dual-energy X-ray absorptiometry(DEXA) has been widely applied to measure the bone mineral density(BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for lowZ materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging(...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics C 2016-04, Vol.40 (4), p.141-148
1. Verfasser: 韩华杰 王圣浩 高昆 王志立 张灿 杨萌 张凯 朱佩平
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dual-energy X-ray absorptiometry(DEXA) has been widely applied to measure the bone mineral density(BMD) and soft-tissue composition of the human body. However, the use of DEXA is greatly limited for lowZ materials such as soft tissues due to their weak absorption, while X-ray phase-contrast imaging(XPCI) shows significantly improved contrast in comparison with the conventional standard absorption-based X-ray imaging for soft tissues. In this paper, we propose a novel X-ray phase-contrast method to measure the area density of low-Z materials, including a single-energy method and a dual-energy method. The single-energy method is for the area density calculation of one low-Z material, while the dual-energy method aims to calculate the area densities of two low-Z materials simultaneously. Comparing the experimental and simulation results with the theoretical ones, the new method proves to have the potential to replace DEXA in area density measurement. The new method sets the prerequisites for a future precise and low-dose area density calculation method for low-Z materials.
ISSN:1674-1137
0254-3052
DOI:10.1088/1674-1137/40/4/048201