Hydrothermal Preparation, Crystal Chemistry, and Redox Properties of Iron Muscovite Clay

The development of functional materials based on Earth-abundant, environmentally benign compositions is critical for ensuring their commercial viability and sustainable production. Here we present an investigation into the crystal chemistry and electrochemical properties of the muscovite clay KFe2.7...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-10, Vol.9 (39), p.34024-34032
Hauptverfasser: Zhou, Shiliang, Howard, Erica S, Liu, Jue, Bashian, Nicholas H, Nolan, Kyle, Krishnamoorthy, Sankarganesh, Rangel, Geovanni M, Sougrati, Moulay-Tahar, Prakash, G. K. Surya, Page, Katharine, Melot, Brent C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of functional materials based on Earth-abundant, environmentally benign compositions is critical for ensuring their commercial viability and sustainable production. Here we present an investigation into the crystal chemistry and electrochemical properties of the muscovite clay KFe2.75Si3.25O10(OH)2. We first report a low-temperature hydrothermal reaction that allows for a significant degree of control over sample crystallinity, particle morphology, and cation distribution through the lattice. A complex sequence of stacking faults is identified and characterized using a combination of Mössbauer spectroscopy and total scattering neutron experiments. We then show the existence of a reversible electrochemical process using galvanostatic cycling with complementary cyclic voltammetry suggesting that the redox activity occurs primarily on the surface of the particles. We conclude by determining that the ability to (de)­intercalate Li ions from the material is hindered by the strong negative charge on the transition metal silicate layers, which prevents the displacement of the interlayer K ions. This work calls attention to a hugely Earth-abundant family of minerals that possesses useful electrochemical properties that warrant further exploration.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b08729