Lagrangian technique to calculate window interface velocity from shock velocity measurements: Application for quartz windows

Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2017-08, Vol.122 (8)
Hauptverfasser: McCoy, Chad A., Knudson, Marcus D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Measurement of the window interface velocity is a common technique for investigating the dynamic response materials at high strain rates. However, these measurements are limited in pressure to the range where the window remains transparent. The most common window material for this application is lithium fluoride, which under single shock compression becomes opaque at ∼200 GPa. To date, no other window material has been identified for use at higher pressures. Here, we present a Lagrangian technique to calculate the interface velocity from a continuously measured shock velocity, with application to quartz. The quartz shock front becomes reflective upon melt, at ∼100 GPa, enabling the use of velocity interferometry to continuously measure the shock velocity. This technique overlaps with the range of pressures accessible with LiF windows and extends the region where wave profile measurements are possible to pressures in excess of 2000 GPa. We show through simulated data that the technique accurately reproduces the interface velocity within 20% of the initial state, and that the Lagrangian technique represents a significant improvement over a simple linear approximation.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4985788