Discovery of Fragment-Derived Small Molecules for in Vivo Inhibition of Ketohexokinase (KHK)

Increased fructose consumption and its subsequent metabolism have been implicated in hepatic steatosis, dyslipidemia, obesity, and insulin resistance in humans. Since ketohexokinase (KHK) is the principal enzyme responsible for fructose metabolism, identification of a selective KHK inhibitor may hel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2017-09, Vol.60 (18), p.7835-7849
Hauptverfasser: Huard, Kim, Ahn, Kay, Amor, Paul, Beebe, David A, Borzilleri, Kris A, Chrunyk, Boris A, Coffey, Steven B, Cong, Yang, Conn, Edward L, Culp, Jeffrey S, Dowling, Matthew S, Gorgoglione, Matthew F, Gutierrez, Jemy A, Knafels, John D, Lachapelle, Erik A, Pandit, Jayvardhan, Parris, Kevin D, Perez, Sylvie, Pfefferkorn, Jeffrey A, Price, David A, Raymer, Brian, Ross, Trenton T, Shavnya, Andre, Smith, Aaron C, Subashi, Timothy A, Tesz, Gregory J, Thuma, Benjamin A, Tu, Meihua, Weaver, John D, Weng, Yan, Withka, Jane M, Xing, Gang, Magee, Thomas V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increased fructose consumption and its subsequent metabolism have been implicated in hepatic steatosis, dyslipidemia, obesity, and insulin resistance in humans. Since ketohexokinase (KHK) is the principal enzyme responsible for fructose metabolism, identification of a selective KHK inhibitor may help to further elucidate the effect of KHK inhibition on these metabolic disorders. Until now, studies on KHK inhibition with small molecules have been limited due to the lack of viable in vivo pharmacological tools. Herein we report the discovery of 12, a selective KHK inhibitor with potency and properties suitable for evaluating KHK inhibition in rat models. Key structural features interacting with KHK were discovered through fragment-based screening and subsequent optimization using structure-based drug design, and parallel medicinal chemistry led to the identification of pyridine 12.
ISSN:0022-2623
1520-4804
DOI:10.1021/acs.jmedchem.7b00947