Phase identification and structure investigation of novel quaternary rare-earth substituted titanates
Novel quaternary lanthanide-substituted oxides of stoichiometry LnxY2−xTi2O7 (where Ln is lanthanum, neodymium, samarium, gadolinium, or ytterbium) were prepared by traditional high-temperature, solid-state techniques and characterized by X-ray powder diffraction. Samples with nominal values of x up...
Gespeichert in:
Veröffentlicht in: | Journal of solid state chemistry 2017-12, Vol.256 (C), p.19-26 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Novel quaternary lanthanide-substituted oxides of stoichiometry LnxY2−xTi2O7 (where Ln is lanthanum, neodymium, samarium, gadolinium, or ytterbium) were prepared by traditional high-temperature, solid-state techniques and characterized by X-ray powder diffraction. Samples with nominal values of x up to 1.0 were attempted. The well-studied ternary cubic pyrochlore compound yttrium titanium oxide (Y2Ti2O7, space group Fd-3m, Z = 8), served as a parent structural framework in which Ln3+ cations were substituted on the Y3+ site. Laboratory-grade X-ray powder diffraction data revealed pure quaternary pyrochlore phases for LnxY2−xTi2O7 with x ≤ 0.2. Pyrochlore phase purity was verified by Rietveld analysis using high-resolution synchrotron X-ray powder diffraction data when x ≤ 0.2, however, for La3+ substitution specifically, pure quaternary pyrochlore formed at x |
---|---|
ISSN: | 0022-4596 1095-726X |
DOI: | 10.1016/j.jssc.2017.08.030 |