Evapotranspiration in Northern Eurasia: Impact of forcing uncertainties on terrestrial ecosystem model estimates

The ecosystems in Northern Eurasia (NE) play an important role in the global water cycle and the climate system. While evapotranspiration (ET) is a critical variable to understand this role, ET over this region remains largely unstudied. Using an improved version of the Terrestrial Ecosystem Model w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2015-04, Vol.120 (7), p.2647-2660
Hauptverfasser: Liu, Yaling, Zhuang, Qianlai, Miralles, Diego, Pan, Zhihua, Kicklighter, David, Zhu, Qing, He, Yujie, Chen, Jiquan, Tchebakova, Nadja, Sirin, Andrey, Niyogi, Dev, Melillo, Jerry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ecosystems in Northern Eurasia (NE) play an important role in the global water cycle and the climate system. While evapotranspiration (ET) is a critical variable to understand this role, ET over this region remains largely unstudied. Using an improved version of the Terrestrial Ecosystem Model with five widely used forcing data sets, we examine the impact that uncertainties in climate forcing data have on the magnitude, variability, and dominant climatic drivers of ET for the period 1979–2008. Estimates of regional average ET vary in the range of 241.4–335.7 mm yr−1 depending on the choice of forcing data. This range corresponds to as much as 32% of the mean ET. Meanwhile, the spatial patterns of long‐term average ET across NE are generally consistent for all forcing data sets. Our ET estimates in NE are largely affected by uncertainties in precipitation (P), air temperature (T), incoming shortwave radiation (R), and vapor pressure deficit (VPD). During the growing season, the correlations between ET and each forcing variable indicate that T is the dominant factor in the north and P in the south. Unsurprisingly, the uncertainties in climate forcing data propagate as well to estimates of the volume of water available for runoff (here defined as P‐ET). While the Climate Research Unit data set is overall the best choice of forcing data in NE according to our assessment, the quality of these forcing data sets remains a major challenge to accurately quantify the regional water balance in NE. Key Points Forcing‐induced uncertainty in the estimation of ET and runoff is considerable ET is dominated by T in the north and P in the south during growing season
ISSN:2169-897X
2169-8996
DOI:10.1002/2014JD022531