Reduction of on-resistance and current crowding in quasi-vertical GaN power diodes
This paper studies the key parameters affecting on-resistance and current crowding in quasi-vertical GaN power devices by experiment and simulation. The current distribution in the drift region, n−-GaN, was found to be mainly determined by the sheet resistance of the current spreading layer, n+-GaN....
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2017-10, Vol.111 (16) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies the key parameters affecting on-resistance and current crowding in quasi-vertical GaN power devices by experiment and simulation. The current distribution in the drift region, n−-GaN, was found to be mainly determined by the sheet resistance of the current spreading layer, n+-GaN. The actual on-resistance of the drift region significantly depends on this current distribution rather than the intrinsic resistivity of the drift layer. As a result, the total specific on-resistance of quasi-vertical diodes shows a strong correlation with the device area and sheet resistance of the current spreading layer. By reducing the sheet resistance of the current spreading layer, the specific on-resistance of quasi-vertical GaN-on-Si power diodes has been reduced from ∼10 mΩ·cm2 to below 1 mΩ·cm2. Design space of the specific on-resistance at different breakdown voltage levels has also been revealed in optimized quasi-vertical GaN power diodes. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4989599 |