Single crystal growth by the traveling solvent technique: A review

A description is given of the traveling solvent technique, which has been used for the crystal growth of both congruently and incongruently melting materials of many classes of intermetallic, chalcogenide, semiconductor and oxide materials. The use of a solvent, growth at lower temperatures and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in crystal growth and characterization of materials 2016-12, Vol.62 (4), p.22-34
1. Verfasser: Koohpayeh, S.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A description is given of the traveling solvent technique, which has been used for the crystal growth of both congruently and incongruently melting materials of many classes of intermetallic, chalcogenide, semiconductor and oxide materials. The use of a solvent, growth at lower temperatures and the zoning process, that are inherent ingredients of the method, can help to grow large, high structural quality, high purity crystals. In order to optimize this process, careful control of the various growth variables is imperative; however, this can be difficult to achieve due to the large number of independent experimental parameters that can be grouped under the broad headings ‘growth conditions’, ‘characteristics of the material being grown’, and ‘experimental configuration, setup and design’. This review attempts to describe the principles behind the traveling solvent technique and the various experimental variables. Guidelines are detailed to provide the information necessary to allow closer control of the crystal growth process through a systematic approach. Comparison is made between the traveling solvent technique and other crystal growth methods, in particular the more conventional stationary flux method. The use of optical heating is described in detail and successful traveling solvent growth by optical heating is reported for the first time for crystals of Tl5Te3, Cd3As2, and FeSc2S4 (using Te, Cd and FeS fluxes, respectively).
ISSN:0960-8974
1878-4208
DOI:10.1016/j.pcrysgrow.2016.03.001