Shape dependence of entanglement entropy in conformal field theories

A bstract We study universal features in the shape dependence of entanglement entropy in the vacuum state of a conformal field theory (CFT) on ℝ 1 , d − 1 . We consider the entanglement entropy across a deformed planar or spherical entangling surface in terms of a perturbative expansion in the infin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2016-04, Vol.2016 (4), p.1-39
Hauptverfasser: Faulkner, Thomas, Leigh, Robert G., Parrikar, Onkar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract We study universal features in the shape dependence of entanglement entropy in the vacuum state of a conformal field theory (CFT) on ℝ 1 , d − 1 . We consider the entanglement entropy across a deformed planar or spherical entangling surface in terms of a perturbative expansion in the infinitesimal shape deformation. In particular, we focus on the second order term in this expansion, known as the entanglement density. This quantity is known to be non-positive by the strong-subadditivity property. We show from a purely field theory calculation that the non-local part of the entanglement density in any CFT is universal, and proportional to the coefficient C T appearing in the two-point function of stress tensors in that CFT. As applications of our result, we prove the conjectured universality of the corner term coefficient σ C T = π 2 24 in d = 3 CFTs, and the holographic Mezei formula for entanglement entropy across deformed spheres.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP04(2016)088