THE Q CONTINUUM SIMULATION: HARNESSING THE POWER OF GPU ACCELERATED SUPERCOMPUTERS

ABSTRACT Modeling large-scale sky survey observations is a key driver for the continuing development of high-resolution, large-volume, cosmological simulations. We report the first results from the "Q Continuum" cosmological N-body simulation run carried out on the GPU-accelerated supercom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal. Supplement series 2015-08, Vol.219 (2), p.1-13
Hauptverfasser: Heitmann, Katrin, Frontiere, Nicholas, Sewell, Chris, Habib, Salman, Pope, Adrian, Finkel, Hal, Rizzi, Silvio, Insley, Joe, Bhattacharya, Suman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Modeling large-scale sky survey observations is a key driver for the continuing development of high-resolution, large-volume, cosmological simulations. We report the first results from the "Q Continuum" cosmological N-body simulation run carried out on the GPU-accelerated supercomputer Titan. The simulation encompasses a volume of and evolves more than half a trillion particles, leading to a particle mass resolution of . At this mass resolution, the Q Continuum run is currently the largest cosmology simulation available. It enables the construction of detailed synthetic sky catalogs, encompassing different modeling methodologies, including semi-analytic modeling and sub-halo abundance matching in a large, cosmological volume. Here we describe the simulation and outputs in detail and present first results for a range of cosmological statistics, such as mass power spectra, halo mass functions, and halo mass-concentration relations for different epochs. We also provide details on challenges connected to running a simulation on almost 90% of Titan, one of the fastest supercomputers in the world, including our usage of Titan's GPU accelerators.
ISSN:0067-0049
1538-4365
1538-4365
DOI:10.1088/0067-0049/219/2/34