Global Analysis of Perovskite Photophysics Reveals Importance of Geminate Pathways

Hybrid organic-inorganic perovskites demonstrate desirable photophysical behaviors and promising applications from efficient photovoltaics to lasing, but the fundamental nature of excited state species is still under debate. We also collected time-resolved photoluminescence of single-crystal nanopla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2016-12, Vol.121 (2)
Hauptverfasser: Manger, Lydia H., Rowley, Matthew B., Fu, Yongping, Foote, Alexander K., Rea, Morgan T., Wood, Sharla L., Jin, Song, Wright, John C., Goldsmith, Randall H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hybrid organic-inorganic perovskites demonstrate desirable photophysical behaviors and promising applications from efficient photovoltaics to lasing, but the fundamental nature of excited state species is still under debate. We also collected time-resolved photoluminescence of single-crystal nanoplates of methylammonium lead iodide perovskite (MAPbI3), with excitation over a range of fluences and repetition rates, to provide a more complete photophysical picture. A fundamentally different way of simulating the photophysics is developed that relies on unnormalized decays, global analysis over a large array of conditions, and inclusion of steady-state behavior; these details are critical to capturing observed behaviors. These additional constraints require inclusion of spatially-correlated pairs, along with free carriers and traps, demonstrating the importance of our comprehensive analysis. Modeling geminate and non-geminate pathways shows geminate processes are dominant at high carrier densities and early times. This combination of data and simulation provides a detailed picture of perovskite photophysics across multiple excitation regimes that was not previously available.
ISSN:1932-7447