Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting
Metal-organic frameworks (MOFs) provide convenient systems for organizing high concentrations of single catalytic sites derived from metallic or oxo-metallic nodes. However, high-temperature processes cause agglomeration of these nodes, so that the single-site character and catalytic activity are lo...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2016-02, Vol.138 (8) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal-organic frameworks (MOFs) provide convenient systems for organizing high concentrations of single catalytic sites derived from metallic or oxo-metallic nodes. However, high-temperature processes cause agglomeration of these nodes, so that the single-site character and catalytic activity are lost. In this work, we present a simple nanocasting approach to provide a thermally stable secondary scaffold for MOP-based catalytic single sites, preventing their aggregation even after exposure to air at 600 degrees C. We describe the nanocasting of NU-1000, a MOP with 3 nm channels and Lewis-acidic oxozirconium clusters, with silica. By condensing tetramethylorthosilicate within the NU-1000 pores via a vapor-phase HCl treatment, a silica layer is created on the inner walls of NU-1000. This silica layer provides anchoring sites for the oxozirconium clusters in NU-1000 after the organic linkers are removed at high temperatures. Differential pair distribution functions obtained from synchrotron X-ray scattering confirmed that isolated oxozirconium clusters are maintained in the heated nanocast materials. Pyridine adsorption experiments and a glucose isomerization reaction demonstrate that the clusters remain accessible to reagents and maintain their acidic character and catalytic activity even after the nanocast materials have been heated to 500-600 degrees C in air. Density functional theory calculations show a correlation between the Lewis acidity of the oxozirconium clusters and their catalytic activity. The ability to produce MOF-derived materials that retain their catalytic properties after exposure to high temperatures makes nanocasting a useful technique for obtaining single-site catalysts suitable for high-temperature reactions. |
---|---|
ISSN: | 0002-7863 1520-5126 |