The role of interfacial metal silicates on the magnetism in FeCo/SiO2 and Fe49%Co49%V2%/SiO2 core/shell nanoparticles
We have investigated the role of spontaneously formed interfacial metal silicates on the magnetism of FeCo/SiO2 and Fe49%Co49%V2%/SiO2 core/shell nanoparticles. Element specific x-ray absorption and photoelectron spectroscopy experiments have identified the characteristic spectral features of metall...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2015-05, Vol.117 (17) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have investigated the role of spontaneously formed interfacial metal silicates on the magnetism of FeCo/SiO2 and Fe49%Co49%V2%/SiO2 core/shell nanoparticles. Element specific x-ray absorption and photoelectron spectroscopy experiments have identified the characteristic spectral features of metallic iron and cobalt from within the nanoparticle core. In addition, metal silicates of iron, cobalt, and vanadium were found to have formed spontaneously at the interface between the nanoparticle core and silica shell. X-ray magnetic circular dichroism experiments indicated that the elemental magnetism was a result of metallic iron and cobalt with small components from the iron, cobalt, and vanadium silicates. Magnetometry experiments have shown that there was no exchange bias loop shift in the FeCo nanoparticles; however, exchange bias from antiferromagnetic vanadium oxide was measured in the V-doped nanoparticles. These results showed clearly that the interfacial metal silicates played a significant role in the magnetism of these core/shell nanoparticles, and that the vanadium percolated from the FeCo-cores into the SiO2-based interfacial shell. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4915482 |