Photocatalysts Based on Cobalt-Chelating Conjugated Polymers for Hydrogen Evolution from Water

Developing photocatalytic systems for water splitting to generate oxygen and hydrogen is one of the biggest chemical challenges in solar energy utilization. In this work, we report the first example of heterogeneous photocatalysts for hydrogen evolution based on in-chain cobalt-chelating conjugated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2016-08, Vol.28 (15), p.5394-5399
Hauptverfasser: Li, Lianwei, Hadt, Ryan G, Yao, Shiyu, Lo, Wai-Yip, Cai, Zhengxu, Wu, Qinghe, Pandit, Bill, Chen, Lin X, Yu, Luping
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Developing photocatalytic systems for water splitting to generate oxygen and hydrogen is one of the biggest chemical challenges in solar energy utilization. In this work, we report the first example of heterogeneous photocatalysts for hydrogen evolution based on in-chain cobalt-chelating conjugated polymers. Two conjugated polymers chelated with earth-abundant cobalt ions were synthesized and found to evolve hydrogen photocatalytically from water. These polymers are designed to combine functions of the conjugated backbone as a light-harvesting antenna and electron-transfer conduit with the in-chain bipyridyl-chelated transition metal centers as catalytic active sites. In addition, these polymers are soluble in organic solvents, enabling effective interactions with the substrates as well as detailed characterization. We also found a polymer-dependent optimal cobalt chelating concentration at which the highest photocatalytic hydrogen production (PHP) activity can be achieved.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.6b01477