A Computational Framework for Identifiability and Ill-Conditioning Analysis of Lithium-Ion Battery Models

The lack of informative experimental data and the complexity of first-principles battery models make the recovery of kinetic, transport, and thermodynamic parameters complicated. We present a computational framework that combines sensitivity, singular value, and Monte Carlo analysis to explore how d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial & engineering chemistry research 2016-03, Vol.55 (11), p.3026-3042
Hauptverfasser: López C, Diana C, Wozny, Günter, Flores-Tlacuahuac, Antonio, Vasquez-Medrano, Ruben, Zavala, Victor M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lack of informative experimental data and the complexity of first-principles battery models make the recovery of kinetic, transport, and thermodynamic parameters complicated. We present a computational framework that combines sensitivity, singular value, and Monte Carlo analysis to explore how different sources of experimental data affect parameter structural ill-conditioning and identifiability. Our study is conducted on a modified version of the Doyle–Fuller–Newman model. We demonstrate that the use of voltage discharge curves only enables the identification of a small parameter subset, regardless of the number of experiments considered. Furthermore, we show that the inclusion of a single electrolyte concentration measurement significantly aids identifiability and mitigates ill-conditioning.
ISSN:0888-5885
1520-5045
DOI:10.1021/acs.iecr.5b03910