A Computational Framework for Identifiability and Ill-Conditioning Analysis of Lithium-Ion Battery Models
The lack of informative experimental data and the complexity of first-principles battery models make the recovery of kinetic, transport, and thermodynamic parameters complicated. We present a computational framework that combines sensitivity, singular value, and Monte Carlo analysis to explore how d...
Gespeichert in:
Veröffentlicht in: | Industrial & engineering chemistry research 2016-03, Vol.55 (11), p.3026-3042 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The lack of informative experimental data and the complexity of first-principles battery models make the recovery of kinetic, transport, and thermodynamic parameters complicated. We present a computational framework that combines sensitivity, singular value, and Monte Carlo analysis to explore how different sources of experimental data affect parameter structural ill-conditioning and identifiability. Our study is conducted on a modified version of the Doyle–Fuller–Newman model. We demonstrate that the use of voltage discharge curves only enables the identification of a small parameter subset, regardless of the number of experiments considered. Furthermore, we show that the inclusion of a single electrolyte concentration measurement significantly aids identifiability and mitigates ill-conditioning. |
---|---|
ISSN: | 0888-5885 1520-5045 |
DOI: | 10.1021/acs.iecr.5b03910 |