Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics

The ultimate goal of this study is to improve the representation of convective transport by cumulus parameterization for mesoscale and climate models. As Part 1 of the study, we perform extensive evaluations of cloud‐resolving simulations of a squall line and mesoscale convective complexes in midlat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2015-04, Vol.120 (8), p.3485-3509
Hauptverfasser: Fan, Jiwen, Liu, Yi-Chin, Xu, Kuan-Man, North, Kirk, Collis, Scott, Dong, Xiquan, Zhang, Guang J., Chen, Qian, Kollias, Pavlos, Ghan, Steven J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3509
container_issue 8
container_start_page 3485
container_title Journal of geophysical research. Atmospheres
container_volume 120
creator Fan, Jiwen
Liu, Yi-Chin
Xu, Kuan-Man
North, Kirk
Collis, Scott
Dong, Xiquan
Zhang, Guang J.
Chen, Qian
Kollias, Pavlos
Ghan, Steven J.
description The ultimate goal of this study is to improve the representation of convective transport by cumulus parameterization for mesoscale and climate models. As Part 1 of the study, we perform extensive evaluations of cloud‐resolving simulations of a squall line and mesoscale convective complexes in midlatitude continent and tropical regions using the Weather Research and Forecasting model with spectral bin microphysics (SBM) and with two double‐moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation and vertical velocity of convective cores than MOR and MY2 and therefore will be used for analysis of scale dependence of eddy transport in Part 2. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates Ze in convective cores, especially for the weak updraft velocity; and (3) the model performs better for midlatitude convective systems than the tropical system. The modeled mass fluxes of the midlatitude systems are not sensitive to microphysics schemes but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow, and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes. Key Points Model overestimates convective intensity and reflectivity above midtroposphere Bin microphysics reduces overestimation of convection intensity Microphysical measurements in convective core are critical to model evaluation
doi_str_mv 10.1002/2014JD022142
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1391863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3689540911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4809-3af28d48ebe6bd4ad1ef7520b51c6986e0da6f8875a17d1337a47f502178920f3</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEElXpjgewYEuKb3FsdnQK045GRaqKqLqxHOeEcZtbbWemwwvxmhhSVV3hjb34vuPzn5Nlbwk-JhjTjxQTvjrFlBJOX2QHlAiVS6XEy6d3ef06OwrhFqcjMeMFP8h-n3ejH7au_4k8jB4C9NFEN_RoaJAd-i3Y6LaAojd9GAcfUTN4FKxpITc74wGNxpsOInj365_4CZFjtHg0Ux3T18i2w1Sj9NEIPjoIKLhuak2EGu1c3KAwJtibFlVuFqqpvUOds8nY7IOz4U32qjFtgKPH-zD7_vXL1eIsX39bni8-r3PLJVY5Mw2VNZdQgahqbmoCTVlQXBXECiUF4NqIRsqyMKSsCWOl4WVTYEpKqShu2GH2bq47hOh0sC6C3aQ59KlBTZgiUrAEvZ-hlOh-ghD17TD5PvWliZBECYa5SNSHmUopQvDQ6NG7zvi9Jlj_XZl-vrKEsxnfuRb2_2X1anl5mlIplax8tlyI8PBkGX-nRcnKQv-4WOr11c3JzeX1iV6xP8plqlw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681963046</pqid></control><display><type>article</type><title>Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Fan, Jiwen ; Liu, Yi-Chin ; Xu, Kuan-Man ; North, Kirk ; Collis, Scott ; Dong, Xiquan ; Zhang, Guang J. ; Chen, Qian ; Kollias, Pavlos ; Ghan, Steven J.</creator><creatorcontrib>Fan, Jiwen ; Liu, Yi-Chin ; Xu, Kuan-Man ; North, Kirk ; Collis, Scott ; Dong, Xiquan ; Zhang, Guang J. ; Chen, Qian ; Kollias, Pavlos ; Ghan, Steven J. ; Argonne National Lab. (ANL), Argonne, IL (United States) ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>The ultimate goal of this study is to improve the representation of convective transport by cumulus parameterization for mesoscale and climate models. As Part 1 of the study, we perform extensive evaluations of cloud‐resolving simulations of a squall line and mesoscale convective complexes in midlatitude continent and tropical regions using the Weather Research and Forecasting model with spectral bin microphysics (SBM) and with two double‐moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation and vertical velocity of convective cores than MOR and MY2 and therefore will be used for analysis of scale dependence of eddy transport in Part 2. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates Ze in convective cores, especially for the weak updraft velocity; and (3) the model performs better for midlatitude convective systems than the tropical system. The modeled mass fluxes of the midlatitude systems are not sensitive to microphysics schemes but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow, and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes. Key Points Model overestimates convective intensity and reflectivity above midtroposphere Bin microphysics reduces overestimation of convection intensity Microphysical measurements in convective core are critical to model evaluation</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2014JD022142</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>bin and bulk microphysics ; Climate models ; cloud-resolving models ; Convection ; Cores ; cumulus parameterization ; deep convection ; Geophysics ; GEOSCIENCES ; Latitude ; Mesoscale convective complexes ; scale aware ; Simulation ; Tropical environments ; Troposphere</subject><ispartof>Journal of geophysical research. Atmospheres, 2015-04, Vol.120 (8), p.3485-3509</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4809-3af28d48ebe6bd4ad1ef7520b51c6986e0da6f8875a17d1337a47f502178920f3</citedby><cites>FETCH-LOGICAL-c4809-3af28d48ebe6bd4ad1ef7520b51c6986e0da6f8875a17d1337a47f502178920f3</cites><orcidid>0000-0002-1938-4046 ; 0000-0001-8355-8699 ; 0000000183558699 ; 0000000219384046</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JD022142$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JD022142$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1391863$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Jiwen</creatorcontrib><creatorcontrib>Liu, Yi-Chin</creatorcontrib><creatorcontrib>Xu, Kuan-Man</creatorcontrib><creatorcontrib>North, Kirk</creatorcontrib><creatorcontrib>Collis, Scott</creatorcontrib><creatorcontrib>Dong, Xiquan</creatorcontrib><creatorcontrib>Zhang, Guang J.</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Kollias, Pavlos</creatorcontrib><creatorcontrib>Ghan, Steven J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>The ultimate goal of this study is to improve the representation of convective transport by cumulus parameterization for mesoscale and climate models. As Part 1 of the study, we perform extensive evaluations of cloud‐resolving simulations of a squall line and mesoscale convective complexes in midlatitude continent and tropical regions using the Weather Research and Forecasting model with spectral bin microphysics (SBM) and with two double‐moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation and vertical velocity of convective cores than MOR and MY2 and therefore will be used for analysis of scale dependence of eddy transport in Part 2. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates Ze in convective cores, especially for the weak updraft velocity; and (3) the model performs better for midlatitude convective systems than the tropical system. The modeled mass fluxes of the midlatitude systems are not sensitive to microphysics schemes but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow, and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes. Key Points Model overestimates convective intensity and reflectivity above midtroposphere Bin microphysics reduces overestimation of convection intensity Microphysical measurements in convective core are critical to model evaluation</description><subject>bin and bulk microphysics</subject><subject>Climate models</subject><subject>cloud-resolving models</subject><subject>Convection</subject><subject>Cores</subject><subject>cumulus parameterization</subject><subject>deep convection</subject><subject>Geophysics</subject><subject>GEOSCIENCES</subject><subject>Latitude</subject><subject>Mesoscale convective complexes</subject><subject>scale aware</subject><subject>Simulation</subject><subject>Tropical environments</subject><subject>Troposphere</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUhiMEElXpjgewYEuKb3FsdnQK045GRaqKqLqxHOeEcZtbbWemwwvxmhhSVV3hjb34vuPzn5Nlbwk-JhjTjxQTvjrFlBJOX2QHlAiVS6XEy6d3ef06OwrhFqcjMeMFP8h-n3ejH7au_4k8jB4C9NFEN_RoaJAd-i3Y6LaAojd9GAcfUTN4FKxpITc74wGNxpsOInj365_4CZFjtHg0Ux3T18i2w1Sj9NEIPjoIKLhuak2EGu1c3KAwJtibFlVuFqqpvUOds8nY7IOz4U32qjFtgKPH-zD7_vXL1eIsX39bni8-r3PLJVY5Mw2VNZdQgahqbmoCTVlQXBXECiUF4NqIRsqyMKSsCWOl4WVTYEpKqShu2GH2bq47hOh0sC6C3aQ59KlBTZgiUrAEvZ-hlOh-ghD17TD5PvWliZBECYa5SNSHmUopQvDQ6NG7zvi9Jlj_XZl-vrKEsxnfuRb2_2X1anl5mlIplax8tlyI8PBkGX-nRcnKQv-4WOr11c3JzeX1iV6xP8plqlw</recordid><startdate>20150427</startdate><enddate>20150427</enddate><creator>Fan, Jiwen</creator><creator>Liu, Yi-Chin</creator><creator>Xu, Kuan-Man</creator><creator>North, Kirk</creator><creator>Collis, Scott</creator><creator>Dong, Xiquan</creator><creator>Zhang, Guang J.</creator><creator>Chen, Qian</creator><creator>Kollias, Pavlos</creator><creator>Ghan, Steven J.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1938-4046</orcidid><orcidid>https://orcid.org/0000-0001-8355-8699</orcidid><orcidid>https://orcid.org/0000000183558699</orcidid><orcidid>https://orcid.org/0000000219384046</orcidid></search><sort><creationdate>20150427</creationdate><title>Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics</title><author>Fan, Jiwen ; Liu, Yi-Chin ; Xu, Kuan-Man ; North, Kirk ; Collis, Scott ; Dong, Xiquan ; Zhang, Guang J. ; Chen, Qian ; Kollias, Pavlos ; Ghan, Steven J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4809-3af28d48ebe6bd4ad1ef7520b51c6986e0da6f8875a17d1337a47f502178920f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>bin and bulk microphysics</topic><topic>Climate models</topic><topic>cloud-resolving models</topic><topic>Convection</topic><topic>Cores</topic><topic>cumulus parameterization</topic><topic>deep convection</topic><topic>Geophysics</topic><topic>GEOSCIENCES</topic><topic>Latitude</topic><topic>Mesoscale convective complexes</topic><topic>scale aware</topic><topic>Simulation</topic><topic>Tropical environments</topic><topic>Troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Jiwen</creatorcontrib><creatorcontrib>Liu, Yi-Chin</creatorcontrib><creatorcontrib>Xu, Kuan-Man</creatorcontrib><creatorcontrib>North, Kirk</creatorcontrib><creatorcontrib>Collis, Scott</creatorcontrib><creatorcontrib>Dong, Xiquan</creatorcontrib><creatorcontrib>Zhang, Guang J.</creatorcontrib><creatorcontrib>Chen, Qian</creatorcontrib><creatorcontrib>Kollias, Pavlos</creatorcontrib><creatorcontrib>Ghan, Steven J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Jiwen</au><au>Liu, Yi-Chin</au><au>Xu, Kuan-Man</au><au>North, Kirk</au><au>Collis, Scott</au><au>Dong, Xiquan</au><au>Zhang, Guang J.</au><au>Chen, Qian</au><au>Kollias, Pavlos</au><au>Ghan, Steven J.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2015-04-27</date><risdate>2015</risdate><volume>120</volume><issue>8</issue><spage>3485</spage><epage>3509</epage><pages>3485-3509</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>The ultimate goal of this study is to improve the representation of convective transport by cumulus parameterization for mesoscale and climate models. As Part 1 of the study, we perform extensive evaluations of cloud‐resolving simulations of a squall line and mesoscale convective complexes in midlatitude continent and tropical regions using the Weather Research and Forecasting model with spectral bin microphysics (SBM) and with two double‐moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation and vertical velocity of convective cores than MOR and MY2 and therefore will be used for analysis of scale dependence of eddy transport in Part 2. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates Ze in convective cores, especially for the weak updraft velocity; and (3) the model performs better for midlatitude convective systems than the tropical system. The modeled mass fluxes of the midlatitude systems are not sensitive to microphysics schemes but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow, and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes. Key Points Model overestimates convective intensity and reflectivity above midtroposphere Bin microphysics reduces overestimation of convection intensity Microphysical measurements in convective core are critical to model evaluation</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JD022142</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-1938-4046</orcidid><orcidid>https://orcid.org/0000-0001-8355-8699</orcidid><orcidid>https://orcid.org/0000000183558699</orcidid><orcidid>https://orcid.org/0000000219384046</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2015-04, Vol.120 (8), p.3485-3509
issn 2169-897X
2169-8996
language eng
recordid cdi_osti_scitechconnect_1391863
source Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects bin and bulk microphysics
Climate models
cloud-resolving models
Convection
Cores
cumulus parameterization
deep convection
Geophysics
GEOSCIENCES
Latitude
Mesoscale convective complexes
scale aware
Simulation
Tropical environments
Troposphere
title Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20representation%20of%20convective%20transport%20for%20scale-aware%20parameterization:%201.%20Convection%20and%20cloud%20properties%20simulated%20with%20spectral%20bin%20and%20bulk%20microphysics&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Fan,%20Jiwen&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-04-27&rft.volume=120&rft.issue=8&rft.spage=3485&rft.epage=3509&rft.pages=3485-3509&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2014JD022142&rft_dat=%3Cproquest_osti_%3E3689540911%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681963046&rft_id=info:pmid/&rfr_iscdi=true