Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics
The ultimate goal of this study is to improve the representation of convective transport by cumulus parameterization for mesoscale and climate models. As Part 1 of the study, we perform extensive evaluations of cloud‐resolving simulations of a squall line and mesoscale convective complexes in midlat...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2015-04, Vol.120 (8), p.3485-3509 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The ultimate goal of this study is to improve the representation of convective transport by cumulus parameterization for mesoscale and climate models. As Part 1 of the study, we perform extensive evaluations of cloud‐resolving simulations of a squall line and mesoscale convective complexes in midlatitude continent and tropical regions using the Weather Research and Forecasting model with spectral bin microphysics (SBM) and with two double‐moment bulk microphysics schemes: a modified Morrison (MOR) and Milbrandt and Yau (MY2). Compared to observations, in general, SBM gives better simulations of precipitation and vertical velocity of convective cores than MOR and MY2 and therefore will be used for analysis of scale dependence of eddy transport in Part 2. The common features of the simulations for all convective systems are (1) the model tends to overestimate convection intensity in the middle and upper troposphere, but SBM can alleviate much of the overestimation and reproduce the observed convection intensity well; (2) the model greatly overestimates Ze in convective cores, especially for the weak updraft velocity; and (3) the model performs better for midlatitude convective systems than the tropical system. The modeled mass fluxes of the midlatitude systems are not sensitive to microphysics schemes but are very sensitive for the tropical case indicating strong microphysics modification to convection. Cloud microphysical measurements of rain, snow, and graupel in convective cores will be critically important to further elucidate issues within cloud microphysics schemes.
Key Points
Model overestimates convective intensity and reflectivity above midtroposphere
Bin microphysics reduces overestimation of convection intensity
Microphysical measurements in convective core are critical to model evaluation |
---|---|
ISSN: | 2169-897X 2169-8996 |
DOI: | 10.1002/2014JD022142 |