Redox regulation of the antimycin A sensitive pathway of cyclic electron flow around photosystem I in higher plant thylakoids

The chloroplast must regulate supply of reducing equivalents and ATP to meet rapid changes in downstream metabolic demands. Cyclic electron flow around photosystem I (CEF) is proposed to balance the ATP/NADPH budget by using reducing equivalents to drive plastoquinone reduction, leading to the gener...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochimica et biophysica acta 2016-01, Vol.1857 (1), p.1-6
Hauptverfasser: Strand, Deserah D., Fisher, Nicholas, Davis, Geoffry A., Kramer, David M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The chloroplast must regulate supply of reducing equivalents and ATP to meet rapid changes in downstream metabolic demands. Cyclic electron flow around photosystem I (CEF) is proposed to balance the ATP/NADPH budget by using reducing equivalents to drive plastoquinone reduction, leading to the generation of proton motive force and subsequent ATP synthesis. While high rates of CEF have been observed in vivo, isolated thylakoids show only very slow rates, suggesting that the activity of a key complex is lost or down-regulated upon isolation. We show that isolation of thylakoids while in the continuous presence of reduced thiol reductant dithiothreitol (DTT), but not oxidized DTT, maintains high CEF activity through an antimycin A sensitive ferredoxin:quinone reductase (FQR). Maintaining low concentrations (~2mM) of reduced DTT while modulating the concentration of oxidized DTT leads to reversible activation/inactivation of CEF with an apparent midpoint potential of −306mV (±10mV) and n=2, consistent with redox modulation of a thiol/disulfide couple and thioredoxin-mediated regulation of the plastoquinone reductase involved in the antimycin A-sensitive pathway, possibly at the level of the PGRL1 protein. Based on proposed differences in regulatory modes, we propose that the FQR and NADPH:plastoquinone oxidoreductase (NDH) pathways for CEF are activated under different conditions and fulfill different roles in chloroplast energy balance. •Reduced DTT is required to maintain cyclic electron flow (CEF) in spinach thylakoid preparations.•The midpoint potential for activation/inactivation of CEF is approximately −306mV.•Indicates redox modulation of thiol/disulfide couple for CEF plastoquinone reductase activity
ISSN:0005-2728
0006-3002
1879-2650
DOI:10.1016/j.bbabio.2015.07.012