DFT modeling of a methane-to-methanol catalytic cycle via Group 6 organometallics: The role of metal in determining the mode of C–H activation

[Display omitted] ► [EpCr(CO)O] 2+ is the most promising among the 12 Group 6 systems modeled. ► The preferred C–H activation path depends changes with changes in the metal. ► The order of energy impact is metal > supporting ligand > co-ligand. Computational modeling of Group 6 complexes of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational and theoretical chemistry 2012-01, Vol.980 (C), p.133-137
Hauptverfasser: Carsch, Kurtis M., Cundari, Thomas R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] ► [EpCr(CO)O] 2+ is the most promising among the 12 Group 6 systems modeled. ► The preferred C–H activation path depends changes with changes in the metal. ► The order of energy impact is metal > supporting ligand > co-ligand. Computational modeling of Group 6 complexes of the form [L n M(Y)O] n (L n : Tp = hydrido- tris(pyrazolyl)borate, Ep = 1,1,1- tris(pyrazolyl)ethane; M = Cr IV, Mo IV, W IV; Y = CO, pyridine, n = 1 + or 2 +) with respect to an oxy-insertion catalytic cycle for the conversion of methane to methanol is reported. Through a DFT study of the reaction mechanism – involving C–H activation and oxygen-atom transfer – competing transition state pathways, molecular geometries, and Gibbs free energies were analyzed. The results indicate that the [EpCr(CO)O] 2+ catalyst is the most promising among the twelve Group 6 systems modeled as the transition state for C–H bond activation requires ∼10 kcal mol −1 for [2 + 2] addition with a reasonably flat potential energy surface for the complete catalytic cycle. Calculations indicate that most Cr-oxo and all Mo-oxo complexes favor a hydrogen atom abstraction (HAA) pathway, whereas the majority of the W-oxo complexes and one of the Cr complexes favors a [2 + 2] mechanism for methane C–H bond activation. With regards to the catalyst components, the following orders, M (Cr > Mo > W) > L n (Ep > Tp) > Y (carbonyl > pyridine), expresses the importance of the individual constituents with respect to their impact on the calculated catalytic cycle.
ISSN:2210-271X
DOI:10.1016/j.comptc.2011.11.039