Interfacial Electron Transfer Dynamics Following Laser Flash Photolysis of [Ru(bpy)2((4,4'-PO3H2)2bpy)]2+ in TiO2 Nanoparticle Films in Aqueous Environments

Nanosecond laser flash photolysis has been used to investigate injection and back electron transfer from the complex [(Ru(bpy)2(4,4'-(PO3H2)2bpy)]2+ surface-bound to TiO2 (TiO2-RuII). The measurements were conducted under conditions appropriate for water oxidation catalysis by known single-site...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2011-02, Vol.4 (2)
Hauptverfasser: Brennaman, M. Kyle, Patrocinio, Antonio Otávio T., Song, Wenjing, Jurss, Jonah W., Concepcion, Javier J., Hoertz, Paul G., Traub, Matthew C., Murakami Iha, Neyde Y., Meyer, Thomas J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanosecond laser flash photolysis has been used to investigate injection and back electron transfer from the complex [(Ru(bpy)2(4,4'-(PO3H2)2bpy)]2+ surface-bound to TiO2 (TiO2-RuII). The measurements were conducted under conditions appropriate for water oxidation catalysis by known single-site water oxidation catalysts. Systematic variations in average lifetimes for back electron transfer, , were observed with changes in pH, surface coverage, incident excitation intensity, and applied bias. The results were qualitatively consistent with a model involving rate-limiting thermal activation of injected electrons from trap sites to the conduction band or shallow trap sites followed by site-to-site hopping and interfacial electron transfer, TiO2(e-)-Ru3+→TiO2-Ru2+. The appearance of pH-dependent decreases in the efficiency of formation of TiO2-Ru3+ and in incident-photon-to-current efficiencies with the added reductive scavenger hydroquinone point to pH-dependent back electron transfer processes on both the sub-nanosecond and millisecond–microsecond time scales, which could be significant in limiting long-term storage of multiple redox equivalents.
ISSN:1864-5631
1864-564X
DOI:10.1002/cssc.201000356