Optical and microwave control of germanium-vacancy center spins in diamond

A solid-state system combining a stable spin degree of freedom with an efficient optical interface is highly desirable as an element for integrated quantum-optical and quantum-information systems. We demonstrate a bright color center in diamond with excellent optical properties and controllable elec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-08, Vol.96 (8), Article 081201
Hauptverfasser: Siyushev, Petr, Metsch, Mathias H., Ijaz, Aroosa, Binder, Jan M., Bhaskar, Mihir K., Sukachev, Denis D., Sipahigil, Alp, Evans, Ruffin E., Nguyen, Christian T., Lukin, Mikhail D., Hemmer, Philip R., Palyanov, Yuri N., Kupriyanov, Igor N., Borzdov, Yuri M., Rogers, Lachlan J., Jelezko, Fedor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A solid-state system combining a stable spin degree of freedom with an efficient optical interface is highly desirable as an element for integrated quantum-optical and quantum-information systems. We demonstrate a bright color center in diamond with excellent optical properties and controllable electronic spin states. Specifically, we carry out detailed optical spectroscopy of a germanium-vacancy (GeV) color center demonstrating optical spectral stability. Using an external magnetic field to lift the electronic spin degeneracy, we explore the spin degree of freedom as a controllable qubit. Spin polarization is achieved using optical pumping, and a spin relaxation time in excess of 20μs is demonstrated. We report resonant microwave control of spin transitions, and use this as a probe to measure the Autler-Townes effect in a microwave-optical double-resonance experiment. Superposition spin states were prepared using coherent population trapping, and a pure dephasing time of about 19ns was observed at a temperature of 2.0 K.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.96.081201