A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries

Formation of soluble polysulfide (PS), which is a key feature of lithium sulfur (Li–S) batteries, provides a fast redox kinetic based on a liquid–solid mechanism; however, it imposes the critical problem of PS shuttle. Here, we address the dilemma by exploiting a solvent-swollen polymeric single-ion...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2017-05, Vol.2 (5), p.1232-1239
Hauptverfasser: Lee, Jinhong, Song, Jongchan, Lee, Hongkyung, Noh, Hyungjun, Kim, Yun-Jung, Kwon, Sung Hyun, Lee, Seung Geol, Kim, Hee-Tak
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1239
container_issue 5
container_start_page 1232
container_title ACS energy letters
container_volume 2
creator Lee, Jinhong
Song, Jongchan
Lee, Hongkyung
Noh, Hyungjun
Kim, Yun-Jung
Kwon, Sung Hyun
Lee, Seung Geol
Kim, Hee-Tak
description Formation of soluble polysulfide (PS), which is a key feature of lithium sulfur (Li–S) batteries, provides a fast redox kinetic based on a liquid–solid mechanism; however, it imposes the critical problem of PS shuttle. Here, we address the dilemma by exploiting a solvent-swollen polymeric single-ion conductor (SPSIC) as the electrolyte medium of the Li–S battery. The SPSIC consisting of a polymeric single-ion conductor and lithium salt-free organic solvents provides Li ion hopping by forming a nanoscale conducting channel and suppresses PS shuttle according to the Donnan exclusion principle when being employed for Li–S batteries. The organic solvents at the interface of the sulfur/carbon composite and SPSIC eliminate the poor interfacial contact and function as a soluble PS reservoir for maintaining the liquid–solid mechanism. Furthermore, the quasi-solid-state SPSIC allows the fabrication of a bipolar-type stack, which promises the realization of a high-voltage and energy-dense Li–S battery.
doi_str_mv 10.1021/acsenergylett.7b00289
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1372974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c989914050</sourcerecordid><originalsourceid>FETCH-LOGICAL-a322t-df9b791587a0f6ac192c91c6c855d8db9f22d65e793a76f30bcc74131d9aa2d83</originalsourceid><addsrcrecordid>eNqFUMtKAzEUDaJgqf0EIbg2mmQ6k8RdLVULxQej6yFNMm3KdFKSDNiF4D_4h36J0XahK7mLe7nnAecAcErwBcGUXEoVTGv8YtuYGC_YHGPKxQHo0YxjxInID3_dx2AQwgpjTAqep-mBtxG8l63bLGUwqDQb6WU0-hw-dTJYVLrGalTG9IOPrtmujbcKlrZdNAZNXQvHrtWdis5f_eCha2qrDZy8qqYLNhFq5-HMxqXt1p_vH2XCOw-vZYzJyYQTcFTLJpjBfvfBy83keXyHZg-30_FohmRGaUS6FnMmSM6ZxHUhFRFUCaIKxfNccz0XNaW6yA0TmWRFneG5UmxIMqKFlFTzrA_Odr4uRFsFZaNRS-Xa1qhYkYxRwYaJlO9IyrsQvKmrjbdr6bcVwdV319Wfrqt910lHdroEVyvX-TZF-UfzBcbDisE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries</title><source>ACS Publications</source><creator>Lee, Jinhong ; Song, Jongchan ; Lee, Hongkyung ; Noh, Hyungjun ; Kim, Yun-Jung ; Kwon, Sung Hyun ; Lee, Seung Geol ; Kim, Hee-Tak</creator><creatorcontrib>Lee, Jinhong ; Song, Jongchan ; Lee, Hongkyung ; Noh, Hyungjun ; Kim, Yun-Jung ; Kwon, Sung Hyun ; Lee, Seung Geol ; Kim, Hee-Tak ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>Formation of soluble polysulfide (PS), which is a key feature of lithium sulfur (Li–S) batteries, provides a fast redox kinetic based on a liquid–solid mechanism; however, it imposes the critical problem of PS shuttle. Here, we address the dilemma by exploiting a solvent-swollen polymeric single-ion conductor (SPSIC) as the electrolyte medium of the Li–S battery. The SPSIC consisting of a polymeric single-ion conductor and lithium salt-free organic solvents provides Li ion hopping by forming a nanoscale conducting channel and suppresses PS shuttle according to the Donnan exclusion principle when being employed for Li–S batteries. The organic solvents at the interface of the sulfur/carbon composite and SPSIC eliminate the poor interfacial contact and function as a soluble PS reservoir for maintaining the liquid–solid mechanism. Furthermore, the quasi-solid-state SPSIC allows the fabrication of a bipolar-type stack, which promises the realization of a high-voltage and energy-dense Li–S battery.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.7b00289</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS energy letters, 2017-05, Vol.2 (5), p.1232-1239</ispartof><rights>Copyright © 2017 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a322t-df9b791587a0f6ac192c91c6c855d8db9f22d65e793a76f30bcc74131d9aa2d83</citedby><cites>FETCH-LOGICAL-a322t-df9b791587a0f6ac192c91c6c855d8db9f22d65e793a76f30bcc74131d9aa2d83</cites><orcidid>0000-0003-4578-5422 ; 0000000345785422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.7b00289$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.7b00289$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1372974$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jinhong</creatorcontrib><creatorcontrib>Song, Jongchan</creatorcontrib><creatorcontrib>Lee, Hongkyung</creatorcontrib><creatorcontrib>Noh, Hyungjun</creatorcontrib><creatorcontrib>Kim, Yun-Jung</creatorcontrib><creatorcontrib>Kwon, Sung Hyun</creatorcontrib><creatorcontrib>Lee, Seung Geol</creatorcontrib><creatorcontrib>Kim, Hee-Tak</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Formation of soluble polysulfide (PS), which is a key feature of lithium sulfur (Li–S) batteries, provides a fast redox kinetic based on a liquid–solid mechanism; however, it imposes the critical problem of PS shuttle. Here, we address the dilemma by exploiting a solvent-swollen polymeric single-ion conductor (SPSIC) as the electrolyte medium of the Li–S battery. The SPSIC consisting of a polymeric single-ion conductor and lithium salt-free organic solvents provides Li ion hopping by forming a nanoscale conducting channel and suppresses PS shuttle according to the Donnan exclusion principle when being employed for Li–S batteries. The organic solvents at the interface of the sulfur/carbon composite and SPSIC eliminate the poor interfacial contact and function as a soluble PS reservoir for maintaining the liquid–solid mechanism. Furthermore, the quasi-solid-state SPSIC allows the fabrication of a bipolar-type stack, which promises the realization of a high-voltage and energy-dense Li–S battery.</description><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKAzEUDaJgqf0EIbg2mmQ6k8RdLVULxQej6yFNMm3KdFKSDNiF4D_4h36J0XahK7mLe7nnAecAcErwBcGUXEoVTGv8YtuYGC_YHGPKxQHo0YxjxInID3_dx2AQwgpjTAqep-mBtxG8l63bLGUwqDQb6WU0-hw-dTJYVLrGalTG9IOPrtmujbcKlrZdNAZNXQvHrtWdis5f_eCha2qrDZy8qqYLNhFq5-HMxqXt1p_vH2XCOw-vZYzJyYQTcFTLJpjBfvfBy83keXyHZg-30_FohmRGaUS6FnMmSM6ZxHUhFRFUCaIKxfNccz0XNaW6yA0TmWRFneG5UmxIMqKFlFTzrA_Odr4uRFsFZaNRS-Xa1qhYkYxRwYaJlO9IyrsQvKmrjbdr6bcVwdV319Wfrqt910lHdroEVyvX-TZF-UfzBcbDisE</recordid><startdate>20170512</startdate><enddate>20170512</enddate><creator>Lee, Jinhong</creator><creator>Song, Jongchan</creator><creator>Lee, Hongkyung</creator><creator>Noh, Hyungjun</creator><creator>Kim, Yun-Jung</creator><creator>Kwon, Sung Hyun</creator><creator>Lee, Seung Geol</creator><creator>Kim, Hee-Tak</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4578-5422</orcidid><orcidid>https://orcid.org/0000000345785422</orcidid></search><sort><creationdate>20170512</creationdate><title>A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries</title><author>Lee, Jinhong ; Song, Jongchan ; Lee, Hongkyung ; Noh, Hyungjun ; Kim, Yun-Jung ; Kwon, Sung Hyun ; Lee, Seung Geol ; Kim, Hee-Tak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a322t-df9b791587a0f6ac192c91c6c855d8db9f22d65e793a76f30bcc74131d9aa2d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jinhong</creatorcontrib><creatorcontrib>Song, Jongchan</creatorcontrib><creatorcontrib>Lee, Hongkyung</creatorcontrib><creatorcontrib>Noh, Hyungjun</creatorcontrib><creatorcontrib>Kim, Yun-Jung</creatorcontrib><creatorcontrib>Kwon, Sung Hyun</creatorcontrib><creatorcontrib>Lee, Seung Geol</creatorcontrib><creatorcontrib>Kim, Hee-Tak</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jinhong</au><au>Song, Jongchan</au><au>Lee, Hongkyung</au><au>Noh, Hyungjun</au><au>Kim, Yun-Jung</au><au>Kwon, Sung Hyun</au><au>Lee, Seung Geol</au><au>Kim, Hee-Tak</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2017-05-12</date><risdate>2017</risdate><volume>2</volume><issue>5</issue><spage>1232</spage><epage>1239</epage><pages>1232-1239</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Formation of soluble polysulfide (PS), which is a key feature of lithium sulfur (Li–S) batteries, provides a fast redox kinetic based on a liquid–solid mechanism; however, it imposes the critical problem of PS shuttle. Here, we address the dilemma by exploiting a solvent-swollen polymeric single-ion conductor (SPSIC) as the electrolyte medium of the Li–S battery. The SPSIC consisting of a polymeric single-ion conductor and lithium salt-free organic solvents provides Li ion hopping by forming a nanoscale conducting channel and suppresses PS shuttle according to the Donnan exclusion principle when being employed for Li–S batteries. The organic solvents at the interface of the sulfur/carbon composite and SPSIC eliminate the poor interfacial contact and function as a soluble PS reservoir for maintaining the liquid–solid mechanism. Furthermore, the quasi-solid-state SPSIC allows the fabrication of a bipolar-type stack, which promises the realization of a high-voltage and energy-dense Li–S battery.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.7b00289</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4578-5422</orcidid><orcidid>https://orcid.org/0000000345785422</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2017-05, Vol.2 (5), p.1232-1239
issn 2380-8195
2380-8195
language eng
recordid cdi_osti_scitechconnect_1372974
source ACS Publications
title A Nanophase-Separated, Quasi-Solid-State Polymeric Single-Ion Conductor: Polysulfide Exclusion for Lithium–Sulfur Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-17T08%3A09%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nanophase-Separated,%20Quasi-Solid-State%20Polymeric%20Single-Ion%20Conductor:%20Polysulfide%20Exclusion%20for%20Lithium%E2%80%93Sulfur%20Batteries&rft.jtitle=ACS%20energy%20letters&rft.au=Lee,%20Jinhong&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2017-05-12&rft.volume=2&rft.issue=5&rft.spage=1232&rft.epage=1239&rft.pages=1232-1239&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.7b00289&rft_dat=%3Cacs_osti_%3Ec989914050%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true