Plasticized Polymer Interlayer for Low-Temperature Fabrication of a High-Quality Silver Nanowire-Based Flexible Transparent and Conductive Film

Silver nanowires (AgNWs) are one of the most promising materials to replace commercially available indium tin oxide in flexible transparent conductive films (TCFs); however, there are still numerous problems originating from poor AgNW junction formation and improper AgNW embedment into transparent s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2017-05, Vol.9 (17), p.15114-15121
Hauptverfasser: Jo, Wonhee, Kang, Hong Suk, Choi, Jaeho, Lee, Hongkyung, Kim, Hee-Tak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Silver nanowires (AgNWs) are one of the most promising materials to replace commercially available indium tin oxide in flexible transparent conductive films (TCFs); however, there are still numerous problems originating from poor AgNW junction formation and improper AgNW embedment into transparent substrates. To mitigate these problems, high-temperature processes have been adopted; however, unwanted substrate deformation prevents the use of these processes for the formation of flexible TCFs. In this work, we present a novel poly­(methyl methacrylate) interlayer plasticized by dibutyl phthalate for low-temperature fabrication of AgNW-based TCFs, which does not cause any substrate deformation. By exploiting the viscoelastic properties of the plasticized interlayer near the lowered glass-transition temperature, a monolithic junction of AgNWs on the interlayer and embedment of the interconnected AgNWs into the interlayer are achieved in a single-step pressing. The resulting AgNW-TCFs are highly transparent (∼92% at a wavelength of 550 nm), highly conductive (
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.7b01344