Optical Trapping and Two-Photon Excitation of Colloidal Quantum Dots Using Bowtie Apertures
We demonstrate bowtie apertures that were designed and fabricated by a lift-off process to optically trap individual, 30 nm, silica-coated quantum dots (scQD). Simulations and experiments confirm the trapping capability of the system with a relatively low continuous wave trapping flux of 1.56 MW/cm2...
Gespeichert in:
Veröffentlicht in: | ACS photonics 2016-03, Vol.3 (3), p.423-427 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We demonstrate bowtie apertures that were designed and fabricated by a lift-off process to optically trap individual, 30 nm, silica-coated quantum dots (scQD). Simulations and experiments confirm the trapping capability of the system with a relatively low continuous wave trapping flux of 1.56 MW/cm2 at 1064 nm. Additionally, the scQD emits upon trapping via two-photon excitation from the trapping laser due to strong field enhancement inside the aperture. This system is an exciting platform for studying light–matter interactions and mulitphoton processes in single emitters. |
---|---|
ISSN: | 2330-4022 2330-4022 |
DOI: | 10.1021/acsphotonics.5b00575 |