Photoinjection of High Potential Holes into Cu5Ta11O30 Nanoparticles by Porphyrin Dyes

Excited-state hole injection into the valence band of Cu5Ta11O30 nanoparticles (NP-Cu5Ta11O30) was investigated through sensitization with zinc porphyrin dyes using simulated solar irradiance. The Cu5Ta11O30 nanoparticles were prepared by a flux-mediated synthesis and found to have an average partic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-09, Vol.119 (37), p.21294-21303
Hauptverfasser: Sullivan, Ian, Brown, Chelsea L, Llansola-Portoles, Manuel J, Gervaldo, Miguel, Kodis, Gerdenis, Moore, Thomas A, Gust, Devens, Moore, Ana L, Maggard, Paul A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Excited-state hole injection into the valence band of Cu5Ta11O30 nanoparticles (NP-Cu5Ta11O30) was investigated through sensitization with zinc porphyrin dyes using simulated solar irradiance. The Cu5Ta11O30 nanoparticles were prepared by a flux-mediated synthesis and found to have an average particle size of ∼10–15 nm by DLS and TEM. The zinc 4-(10,15,20-tris­(4-pyridinyl)-porphin-5-yl)­phenyl­phos­phonic acid (D1) and its analogue, in which the pyridine groups are methylated (D2), were synthesized and found to have excited-state reduction potentials appropriate for p-type dye sensitization of the nanoparticles. The dye-sensitized NP-Cu5Ta11O30 exhibited fluorescence quenching consistent with electron transfer from the NP-Cu5Ta11O30 to the dye; forward and recombination rates were obtained by transient absorption measurements. Hole injection times of 8 ps and
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.5b02174