Core Level Shifts of Hydrogenated Pyridinic and Pyrrolic Nitrogen in the Nitrogen-Containing Graphene-Based Electrocatalysts: In-Plane vs Edge Defects
A combination of N 1s X-ray photoelectron spectroscopy (XPS) and first principles calculations of nitrogen-containing model electrocatalysts was used to elucidate the nature of the nitrogen defects that contribute to the binding energy (BE) range of the N 1s XPS spectra of these materials above ∼400...
Gespeichert in:
Veröffentlicht in: | Journal of physical chemistry. C 2016-12, Vol.120 (51), p.29225-29232 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A combination of N 1s X-ray photoelectron spectroscopy (XPS) and first principles calculations of nitrogen-containing model electrocatalysts was used to elucidate the nature of the nitrogen defects that contribute to the binding energy (BE) range of the N 1s XPS spectra of these materials above ∼400 eV. Experimental core level shifts were obtained for a set of model materials, namely N-doped carbon nanospheres, Fe–N–carbon nanospheres, polypyrrole, polypyridine, and pyridinium chloride, and were compared to the shifts calculated using density functional theory. The results confirm that the broad peak positioned at ∼400.7 eV in the N 1s XPS spectra of N-containing catalysts, which is typically assigned to pyrrolic nitrogen, contains contributions from other hydrogenated nitrogen species such as hydrogenated pyridinic functionalities. Namely, N 1s BEs of hydrogenated pyridinic-N and pyrrolic-N were calculated as 400.6 and 400.7 eV, respectively, using the Perdew–Burke–Ernzerhof exchange-correlation functional. A special emphasis was placed on the study of the differences in the XPS imprint of N-containing defects that are situated in the plane and on the edges of the graphene sheet. Density functional theory calculations for BEs of the N 1s of in-plane and edge defects show that hydrogenated N defects are more sensitive to the change in the chemical environment in the carbon matrix than the non-hydrogenated N defects. Calculations also show that edge-hydrogenated pyridinic-N and pyrrolic-N defects only contribute to the N 1s XPS peak located at ∼400.7 eV if the graphene edges are oxygenated or terminated with bare carbon atoms. |
---|---|
ISSN: | 1932-7447 1932-7455 |
DOI: | 10.1021/acs.jpcc.6b09778 |