Magnetotransport of Weyl semimetals due to the chiral anomaly
We study the electric field and temperature gradient driven magnetoconductivity of a Weyl semimetal system. To analyze the responses, we utilize the kinetic equation with semiclassical equations of motion modified by the Berry curvature and orbital magnetization of the wave packet. Apart from the kn...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2017-06, Vol.95 (24), p.245128, Article 245128 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the electric field and temperature gradient driven magnetoconductivity of a Weyl semimetal system. To analyze the responses, we utilize the kinetic equation with semiclassical equations of motion modified by the Berry curvature and orbital magnetization of the wave packet. Apart from the known positive quadratic magnetoconductivity, we show that due to the chiral anomaly, the magnetoconductivity can become a nonanalytic function of the magnetic field, proportional to the 32 power of the magnetic field at finite temperatures. We also show that time-reversal symmetry breaking tilt of the Dirac cones results in linear magnetoconductivity. This is due to the one-dimensional chiral anomaly for which the tilt is responsible. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.95.245128 |