Laser-driven magnetized liner inertial fusion
A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2017-06, Vol.24 (6) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A laser-driven, magnetized liner inertial fusion (MagLIF) experiment is designed for the OMEGA Laser System by scaling down the Z point design to provide the first experimental data on MagLIF scaling. OMEGA delivers roughly 1000× less energy than Z, so target linear dimensions are reduced by factors of ∼10. Magneto-inertial fusion electrical discharge system could provide an axial magnetic field of 10 T. Two-dimensional hydrocode modeling indicates that a single OMEGA beam can preheat the fuel to a mean temperature of ∼200 eV, limited by mix caused by heat flow into the wall. One-dimensional magnetohydrodynamic (MHD) modeling is used to determine the pulse duration and fuel density that optimize neutron yield at a fuel convergence ratio of roughly 25 or less, matching the Z point design, for a range of shell thicknesses. A relatively thinner shell, giving a higher implosion velocity, is required to give adequate fuel heating on OMEGA compared to Z because of the increase in thermal losses in smaller targets. Two-dimensional MHD modeling of the point design gives roughly a 50% reduction in compressed density, temperature, and magnetic field from 1-D because of end losses. Scaling up the OMEGA point design to the MJ laser energy available on the National Ignition Facility gives a 500-fold increase in neutron yield in 1-D modeling. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4984779 |