High temperature digital image correlation evaluation of in-situ failure mechanism: An experimental framework with application to C/SiC composites

A high temperature digital image correlation (DIC) technique was developed, which was applied to study the in-situ fracture behavior of a carbon fibre reinforced silicon carbide matrix (C/SiC) composite. The displacement distribution and cracking information of the C/SiC single edge notched beam spe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2016-05, Vol.665 (C), p.26-34
Hauptverfasser: Mao, W.G., Chen, J., Si, M.S., Zhang, R.F., Ma, Q.S., Fang, D.N., Chen, X.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A high temperature digital image correlation (DIC) technique was developed, which was applied to study the in-situ fracture behavior of a carbon fibre reinforced silicon carbide matrix (C/SiC) composite. The displacement distribution and cracking information of the C/SiC single edge notched beam specimen can be monitored real-time, thanks to the improved DIC technique with special speckle patterns that can reach up to 1600°C. The results showed that the brittle to ductile transition temperature of C/SiC composites is about 1300°C. The new failure mechanisms of C/SiC composites at different experimental temperatures were further verified with the aid of X-ray diffraction and scanning electron microscope (SEM) techniques. In addition, the relationships between the fracture toughness, first-crack strength of C/SiC composites and environmental temperature were deduced. The proposed experimental method and testing results may shed some light on assessing the reliability and durability of C/SiC composites at high temperatures.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2016.04.021