Radiation enhanced diffusion of cesium, strontium, and europium in silicon carbide

The radiation enhanced diffusion (RED) of three key fission products in SiC: cesium, europium, and strontium was investigated following ion irradiation at a damage rate of 4.6 × 10−4 dpa s−1 at temperatures between 900° C and 1100° C. The radiation enhancement of diffusion was as large as 107 at 900...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2016-06, Vol.474 (C), p.76-87
Hauptverfasser: Dwaraknath, S.S., Was, G.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The radiation enhanced diffusion (RED) of three key fission products in SiC: cesium, europium, and strontium was investigated following ion irradiation at a damage rate of 4.6 × 10−4 dpa s−1 at temperatures between 900° C and 1100° C. The radiation enhancement of diffusion was as large as 107 at 900° C, and dropped to a value of 1 by 1300° C for all but cesium grain boundary diffusion. Strontium and cesium exhibited several orders of magnitude enhancement for both mechanisms. Europium enhancement was greatest at 900° C, but dropped to the thermal rates at 1100° C for both mechanisms. The trends in the RED mechanism correlated well with the point defect concentrations suggesting that both carbon and silicon vacancy concentrations are important for fission product diffusion. These constitute the first radiation-enhanced diffusion measurements of strontium, cesium and europium in SiC.
ISSN:0022-3115
1873-4820
DOI:10.1016/j.jnucmat.2016.02.034